ON THE THEOREM OF S. KAKUTANI-M. NAGUMO AND J. L. WALSH FOR THE MEAN VALUE PROPERTY OF HARMONIC AND COMPLEX POLYNOMIALS

SHIGERU HARUKI

Let K be either the field of complex numbers C or the field of real numbers R. Let n be a fixed integer >2, and θ denote the number $\exp(2\pi i/n)$. Let $f, f_j: C \to K$ for $j = 0, \dots, n$. Define Λ_n and Ω_n by

$$egin{aligned} &A_n(x,y) = n^{-1} \Big[\sum \limits_{j=0}^{n-1} f(x+ heta^j y) \Big] - f(x) \;, \ & \mathcal{Q}_n(x,y) = n^{-1} \Big[\sum \limits_{j=0}^{n-1} f_j(x+ heta^j y) \Big] - f_n(x) \;, \end{aligned}$$

for all $x, y \in C$. Our main result is the following. If (n + 1) unknown functions $f_j: C \to K$ for $j = 0, 1, \dots, n$ satisfy the quasi mean value property $\Omega_n(x, y) = 0$ for all $x, y \in C$, then (n + 1) unknown functions f_j satisfy the difference functional equation $\int_u^n f_j(x) = 0$ for all $u, x \in C$ and for each $j = 0, 1, \dots, n$, where the usual difference operator Δ_u is defined by $\Delta_u f(x) = f(x + u) - f(x)$. By using this result we prove somewhat stronger results than the theorem of S. Kakutani-M. Nagumo (Zenkoku, Sūgaku Danwakai, 66 (1935), 10-12) and J. L. Walsh (Bull. Amer. Math. Soc., 42 (1936), 923-930) for the mean value property $\Lambda_n(x, y) = 0$ of harmonic and complex polynomials.

1. Introduction. Throughout this note K denotes either the field of complex numbers C or the field of real numbers R. Let n be a fixed integer >2, and θ denote the number $\exp(2\pi i/n)$. Let $f, f_{\nu}: C \to K$ for $\nu = 0, 1, \dots, n$. Define $\Lambda_n(x, y)$ and $\Omega_n(x, y)$ by

for all $x, y \in C$. A function $f: C \to K$ is said to have the mean value property for polynomials if f satisfies the equation

$$\Lambda_n(x, y) = 0$$
 for all $x, y \in C$,

while, as a generalization of the mean value property, n + 1 functions $f_{\nu}: C \to K$ are said to have the quasi mean value property for polynomials if f_{ν} satisfy the equation

$${\Omega}_n(x, y) = 0$$
 for all $x, y \in C$.