COMPLETELY REGULAR ABSOLUTES AND PROJECTIVE OBJECTS

R. F. DICKMAN, JR., J. R. PORTER, AND L. R. RUBIN

The absolute (EX, π_X) is constructed for an arbitrary space X and is shown to be unique with respect to EXbeing extremally disconnected and completely regular and π_X being a θ -continuous, perfect, separating irreducible surjection. A function $f: X \to Y$ is said to have a continuous E-lifting if there is a continuous function $F: EX \to EY$ such that $\pi_Y \circ F = f \circ \pi_X$. A class of functions, called η -continuous, is introduced, shown to contain the class of continuous functions and the class of θ -continuous, closed surjections, and proved to have continuous E-liftings. Functions which have continuous E-liftings are completely characterized as being the composition of η -continuous functions.

1. Introduction and preliminaries. In 1963, Iliadis (see [7]) constructed, for a Hausdorff space X, an extremally disconnected Tychonoff space EX and an irreducible, perfect θ -continuous surjection $\pi_X: EX \to X$ and showed that (EX, π_X) is unique in this sense: If Y is an extremally disconnected, Tychonoff space and $f: Y \rightarrow X$ is an irreducible, perfect, θ -continuous surjection, then there is a homeomorphism $g: EX \to Y$ such that $f \circ g = \pi_x$. In 1969, Mioduszewski and Rudolf [9] modified this construction to obtain a space aX which has the same underlying set as EX and the topology of aX is generated by the topology of EX plus $\{\pi_X^{-1}(U): U \text{ open in } X\}$. The function $a_X: aX \to X$ is the same as the function π_X . The space aXis extremally disconnected and Hausdorff, and the function a_x is an irreducible, perfect continuous surjection. Also, (aX, a_x) is shown to be unique in the sense similar to the uniqueness of (EX, π_x) . So, there is a trade-off — the Tychonoffness of EX is reduced to Hausdorff for aX, but the θ -continuity of π_X is strengthened to continuity for a_x . Both EX and aX are called absolutes of X.

More recently, Sapiro [11] and Ul'janov [13] extended the construction and uniqueness of (aX, a_x) (aX is denoted in [11] by qX) for an arbitrary topological space X. In this case, aX is extremally disconnected and a_x is a separating, irreducible perfect continuous surjection. Also, they showed if $f: X \to Y$ is a continuous function between spaces X and Y, there is a continuous function $F: aX \to$ aY such that $a_x \circ F = f \circ a_x$.

In the second section of this paper we characterize the projective objects in the category of spaces and perfect separating continuous functions as morphisms. As a cosequence, we obtain the