ON WEAK RESTRICTED ESTIMATES AND ENDPOINT PROBLEMS FOR CONVOLUTIONS WITH OSCILLATING KERNELS (I)

W. B. JURKAT AND G. SAMPSON

Throughout we consider $K(t) = e^{i|t|^a}/|t|^b$, a > 0, $a \neq 1$, b < 1 and $t \in \mathbf{R}$. Here we consider for fixed $\lambda, \mu > 0$ the function $B(\lambda, \mu; K) = B(\lambda, \mu) = \sup_{\chi_\lambda \mid \chi_\mu} \int \chi_\lambda(x) K * \chi_\mu(x) dx$ where the sup is taken over all "characteristic" functions χ_λ , χ_μ with complex signs (i.e., χ_μ is a measurable function for which $|\chi_\mu| = 1$ on E, $|\chi_\mu| = 0$ off E and $|E| \leq \mu \ (\mu > 0)$). We estimate $B(\lambda, \mu; K)$ within constant factors from above and below. This settles the endpoint problems for these kernels, at least in the weak restricted sense.

0. Introduction. This paper is concerned with (L_p, L_q) -mapping properties of the operator

$$g = K * f$$
, $g(x) = \int K(x - y)f(y)dy$ $(x, y \in \mathbb{R}^n)$,

in particular with (weak restricted) estimates

(1)
$$\left|\int \chi_{\lambda}(K * \chi_{\mu})\right| \leq c_{pq} \lambda^{1/q'} \mu^{1/p} (1/q + 1/q' = 1)$$
,

where, e.g., χ_{μ} denotes a "characteristic" function with complex signs, i.e., a measurable function with $|\chi_{\mu}| = 1$ on E, $|\chi_{\mu}| = 0$ off E, $|E| \leq \mu(\mu > 0)$. Let us denote by $B(\lambda, \mu) \equiv B(\lambda, \mu; K)$ the quantity

$$\sup_{\chi_{\lambda} \cdot \chi_{\mu}} \left| \int \chi_{\lambda}(K st \chi_{\mu})
ight| \, = \sup_{\chi_{\lambda} \cdot \chi_{\mu}} \left| \iint K(x \, + \, y) \chi_{\lambda}(x) \chi_{\mu}(y) dx dy
ight| \, ,$$

where the sup varies over all characteristic functions χ_{λ} , χ_{μ} with fixed $\lambda > 0$, $\mu > 0$. Our present problem will be to estimate $B(\lambda, \mu)$ as closely as possible from above and below.

In earlier papers [4], [9], [13], [14] we already discussed the mapping properties for oscillating kernels. In [4] we gave, in part, the mapping properties for the kernels

(2)
$$K(t) = \frac{e^{i|t|^a}}{|t|^b} (0 \neq t \in \mathbf{R})$$
 with $a > 0, a \neq 1, b < 1$

except for the endpoints. By means of the function $B(\lambda, \mu)$ we settle the endpoint problems in the weak restricted sense. Furthermore, we determine $B(\lambda, \mu)$ within constant factors from above and