ORDERS OF FINITE ALGEBRAIC GROUPS

K. F. LAI

Let \overline{G} be a simply connected simple algebraic group over a finite field F_q of q elements. The order of the group $\overline{G}(F_q)$ of F_q -rational points of \overline{G} is well-known (cf: Steinberg, Carter). The proof makes use of the Bruhat decomposition and the study of polynomials invariant under the action the Weyl group. In this paper we deduce the order of $\overline{G}(F_q)$ from an explicit formula for the integral $M(s, \Lambda)$ which occurs in Langlands' theory of Eisenstein series.

First of all, according to a theorem of Lang \overline{G} is quasi-split (cf: Lang [9], Satake [13] p. 105) and from Steinberg's theorem (cf: Steinberg [14], Kneser [6] p. 255) \overline{G} is either a Chevalley group or a twisted group of one of the following types: ${}^{2}A_{1}(l \ge 2)$, ${}^{2}D_{1}(l \ge 4)$, ${}^{2}E_{6}$, ${}^{3}D_{4}$, ${}^{2}B_{2}$, ${}^{2}G_{2}$ and ${}^{2}F_{4}$. To simplify matters we shall assume that the characteristic of F_{q} is not 2 and 3 and exclude groups of the type ${}^{2}B_{2}$, ${}^{2}G_{2}$ and ${}^{2}F_{4}$. Furthermore we can assume that there exists a quasi-split simple algebraic group G defined over a p-adic number field F such that the residue field of F is isomorphic to F_{q} , G splits over an unramified Galois extension E of F and G reduces modulo p to \overline{G} (cf: Weil [17]).

1. Fix a Haar measure dx on F such that the volume of the ring R of p-adic integers in F is one. Let ω be a left invariant highest F-differential form on G. Then ω and dx determines a Haar measure on G(F) which will also be denoted by ω (cf: Weil [17]).

LEMMA 1. Let m be the dimension of \overline{G} and $|\overline{G}(F_q)|$ be the order of $\overline{G}(F_q)$. Then

$$(1) \qquad |\bar{G}(F_q)| = q^m \int_{\mathcal{G}(R)} \boldsymbol{\omega} .$$

This is proved in Weil [17] p. 22.

2. Let B be a Borel subgroup of G defined over F and A a maximal torus of G in B. Then by assumption the Galois group $\operatorname{Gal}(E/F)$ acts on the group X(A) of rational characters of A. This gives rise to a representation

$$\pi: \operatorname{Gal} \left(E/F \right) \longrightarrow \operatorname{Eng} \left(X(A) \bigotimes_{\mathbf{Z}} Q \right) \,.$$