A CHARACTERIZATION OF *M*-IDEALS IN $B(\zeta)$ FOR 1

PATRICK FLINN

For 1 the only nontrivial <math>M-ideal in $B(\mathcal{L}_p)$, the bounded linear operators on \mathcal{L}_p , is $K(\mathcal{L}_p)$, the ideal of compact operators on \mathcal{L}_p .

- 1. Introduction. Certain theorems for B(H) (the bounded linear operators on H a separable Hilbert space) are known to hold for $B(\ell_p)$, $1 . For example, it is well known that the only nontrivial closed two-sided ideal in <math>B(\ell_p)$, $1 \le p < \infty$ is $K(\ell_p)$, the compact linear operators on ℓ_p . Hennefeld [4] has shown that $K(\ell_p)$ is an M-ideal in $B(\ell_p)$ for $1 . It is also known that <math>K(\ell_p)$ is the only nontrivial M-ideal in $B(\ell_p)$. This follows from the fact that in a B^* -algebra, the M-ideals are precisely the closed two-sided ideals [5]. The purpose of this paper is to show that this result also generalizes to $B(\ell_p)$, for 1 . As this paper is largely based on the work of Smith and Ward [5] it is perhaps not surprising that a result of theirs, namely that every nontrivial <math>M-ideal in $B(\ell_p)$ for $1 contains <math>K(\ell_p)$, has a new proof.

The state space S of a banach algebra A with identity e is defined to be $\{\phi \in A^* : \phi(e) = \|\phi\| = 1\}$. An element $h \in A$ is hermitian if $\|e^{i\lambda h}\| = 1$ for all real λ . Equivalently [2] h is hermitian if and only if $\{\phi(h): h \in S\} \subseteq R$. A^{**} when endowed with Arens multiplication [3] is a Banach algebra with identity e, and by the weak-star density of A in A^{**} , $h \in A^{**}$ is hermitian if and only if h is real valued on the state space of A.

In [5] it is shown that *M*-ideals in Banach algebras are necessarily subalgebras. Other results of this paper and [6] needed in the sequel are now summarized:

Let M be an M-ideal in $B(\mathscr{L}_p)$, $1 . Then clearly <math>M^{\perp \perp}$ is an M-summand in $B(\mathscr{L}_p)^{**}$; that is, $B(\mathscr{L}_p)^{**} = M^{\perp \perp} \bigoplus_{e_0} M^*$. Let