ABSOLUTE C^* -EMBEDDING OF F-SPACES

ALAN DOW AND ORTWIN FÖRSTER

Let $\mathscr U$ be an open cover of a space X. We define $\mathscr U$ to be a P-cover if each element of $\mathscr U$ is a proper subset of X, $\mathscr U$ is closed under countable unions and for every $U \in \mathscr U$ there is a $V \in \mathscr U$ such that U and $X \setminus V$ are completely separated. We prove an F-space X is C^* -embedded in every F-space it is embedded in iff X has no P-covers or X is almost compact.

- 1. Introduction. In 1949, Hewitt [7] proved that a Tychonoff space is C^* -embedded in every Tychonoff space in which it is embedded iff X is almost compact. C. E. Aull [1] has shown that a P-space X is C^* -embedded in every P-space in which it is embedded iff X is almost Lindelöf (given disjoint zero sets of X at least one is Lindelöf). These two theorems are examples of absolute C^* -embedding theorems. In §3 of this paper we will provide the absolute C^* -embedding theorem for F-spaces. In §4 we obtain partial results concerning C^* -embeddings in basically disconnected spaces.
- 2. DEFINITIONS. All topological spaces will be assumed to be Tychonoff. The following theorem is useful when dealing with F-spaces and also provides a definition of F-spaces.

THEOREM 2.1 [6, 14.25]. The following are equivalent

- (1) X is an F-space.
- (2) βX is an F-space.
- (3) disjoint cozero subsets of X are completely separated.
- (4) cozero subsets of X are C^* -embedded.
- (5) disjoint cozero subsets of βX have disjoint closures.

X is basically disconnected if the closure of every cozero set is clopen. X is a P-space if every zero set of X is open. The reader is referred to [6] for background on P-spaces, F-spaces and basically disconnected spaces. X is weakly Lindelöf if every open cover of X contains a countable subcollection whose union is dense in X [2]. If X is a subspace of Y and $\mathscr C$ is a collection of subsets of Y, we define $\mathscr C|_X = \{C \cap X: C \in \mathscr C\}$.

The cardinality of a set K is denoted by |K| and the immediate successor of a cardinal α is denoted by α^+ . The cofinality of a non-