A SPECTRAL CONTAINMENT THEOREM ANALOGOUS TO THE SEMIGROUP THEORY RESULT $e^{t\sigma(A)} \subseteq \sigma(e^{tA})$

D. M. TERLINDEN

It is known that if A generates a (C_0) semigroup (e^{tA}) , then $e^{t\sigma(A)} \subseteq \sigma(e^{tA})$, where σ denotes "spectrum." This result is generalized to the context of solution operators of certain nth order linear differential equations.

1. Introduction. Let (T_t) be a (C_0) semigroup on a Banach space X with generator A. It is known [2, p. 457] that

$$(1.1) e^{t\sigma(A)} \subseteq \sigma(T_t).$$

Since $T_t f$ solves the differential equation

$$\begin{cases} x' = Ax \\ x(0) = f, \end{cases}$$

 $T_t f$ can be formally written as e^{tA} , so that (1.1) can be written as

$$(1.3) e^{t\sigma(A)} \subseteq \sigma(e^{tA}).$$

In this paper it will be shown that if one replaces the first derivative in (1.2) by an nth order linear differential expression L producing the equation

$$\begin{cases} Lx = Ax \ x(0) = f \ x^{(i)}(0) = 0 & ext{for} \quad j = 2, \dots, n-1 \end{cases}$$

solved by $S_t f$ for some linear operators S_t and replaces e^{tz} , the solution in C of

$$\begin{cases} x' = zx \\ x(0) = 1 \end{cases}$$

by $\psi(t,z)$, the solution of

$$\begin{cases} Lx = zx \ x(0) = 1 \ x^{(i)}(0) = 0 & ext{for} \quad j = 2, \dots, n-1 \end{cases}$$

(so that formally $S_t = \psi(t, A)$), then the analog

$$\psi(t, \sigma(A)) \subseteq \sigma(S_t);$$

 $\psi(t, \sigma(A)) \subseteq \sigma(\psi(t, A))$