COMPACT OPERATORS AND DERIVATIONS INDUCED BY WEIGHTED SHIFTS

C. RAY ROSENTRATER

In this paper we study the question: which compact operators are contained in $\Re(\delta_S)^-$, the norm closure of the range of the derivation $\delta_S(X) = SX - XS$ induced by a weighted shift S? We find that $\Re(\delta_S)^-$ always contains the lower triangular (with respect to the basis (e_i) on which S is a shift) compact operators. Further, $\Re(\delta_S)^-$ contains the n-lower triangular (operators T satisfying $(Te_i, e_j) = 0$ for i - j > n) compact operators if and only if $e_1 \otimes e_{n+1} \in \Re(\delta_S)^-$. We also find necessary and sufficient conditions on the weights of S in order that $e_1 \otimes e_{n+1} \in \Re(\delta_S)^-$ and that $\Re(\delta_S)^-$, the algebra of compact operators, be contained in $\Re(\delta_S)^-$. These results completely answer the question: which essentially normal weighted shifts are d-symmetric?

Let $T \in \mathfrak{B}(\mathfrak{K})$, the algebra of bounded linear operators on a complex Hilbert space \mathfrak{K} . The derivation induced by T is the map $\delta_T(X) = TX - XT$ from $\mathfrak{B}(\mathfrak{K})$ to itself. Let $(e_n)_{n=1}^{\infty}$ (respectively $(e_n)_{n=-\infty}^{\infty}$) be an orthonormal basis for \mathfrak{K} and let S be the unilateral (respectively bilateral) weighted shift $Se_n = w_n e_{n+1}$, $n \in \mathbb{N}$ (respectively $n \in \mathbb{Z}$) with nonzero weights w_n . By taking a unitarily equivalent weighted shift, we may assume that $w_n = |w_n| > 0$.

Recall that for $f, g \in \mathcal{K}$, the operator $f \otimes g \in \mathfrak{B}(\mathcal{K})$ is defined by $(f \otimes g)h = (h, g)f$ for $h \in \mathcal{K}$. In particular, $(e_i \otimes e_j)e_n = e_i$ if n = j and $(e_i \otimes e_j)e_n = 0$ otherwise. In Theorem 2 we show that $e_1 \otimes e_{n+1} \in \mathfrak{R}(\delta_S)^-$ if and only if $\sum_k w_k \cdot w_{k+1} \cdot \cdots \cdot w_{n+k-1} = \infty$. In Corollary 2, we find that this is also equivalent to $\mathfrak{R}(\delta_S)^-$ containing all the *n*-lower triangular compact operators.

The above results enable us to characterize those essentially normal weighted shifts that are d-symmetric (i.e., satisfy $\Re(\delta_S)^- = \Re(\delta_S)^{-*}$). Namely, an essentially normal weighted shift is d-symmetric if and only if S satisfies the total products condition $\sum_k w_k \cdot w_{k+1} \cdot \cdots \cdot w_{k+n} = \infty$ for all $n \in \mathbb{N}$. This yields another proof of the fact proved in Corollary 4 of [8] that all hyponormal (and hence all subnormal) weighted shifts are all d-symmetric.

THEOREM 1. Let S be the unilateral (bilateral) weighted shift $Se_n = w_n e_{n+1}$ $n \in \mathbb{N}$ (**Z**). Then $e_i \otimes e_j \in \Re(\delta_S)$ for all $i, j \in \mathbb{N}$ (**Z**) with i > j.

Proof. Write i = j + n with n > 0. Let $a_0 = 1/w_j$, $a_k = w_{j+n} \cdot \cdots \cdot w_{j+n+k-1}/w_j \cdot \cdots \cdot w_{j+k}$ for $k \ge 1$, and $a_k = 0$ for k < 0. Then