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SOME INEQUALITIES FOR PRODUCTS
OF POWER SUMS

BRrRUCE REZNICK

We study the asymptotic behavior of the range of the ratio of
products of power sums. For x = (x,,...,x,), define M, = M, (x) =
Zx?. As two representative and explicit results, we show that the
maximum and minimum of the function M, M;/M} are +3/3 /16 n'/*
+5/8+ 0(n™'/?) and that n = M, M;/M, > -n/8, where “1/8” is
the best possible constant. We give readily computable, if less explicit,
formulas of this kind for M, --- M7 /M, q” , 2 a,p, = bq. Applications to
integral inequalities are discussed. Our results generalize the classical
Holder and Jensen inequalities. All proofs are elementary.

1. Introduction and background. In this paper I shall discuss some
inequalities involving power sums which build upon, and generalize, the
Holder and Jensen inequalities. Since the proofs, although elementary,
involve lengthy and cumbersome computation, I shall indicate the main
results and spirit of the paper in this introduction.

For x = (x,,...,x,) € R"and p > 0 define

(1.1) M,(x) = X xI;

we exclude the possibility that some x, is negative in (1.1) when p is not
integral and set My(x) = n.

MAIN THEOREM (see (3.5) and (3.17)). Suppose
f(x) = M (x) - - - Myr(x)/MJ(x),

where X a,p, = bq and all parameters are positive. Let M denote the
maximum value of f (M depends on n, the number of variables). Then there
exist readily computable constants c, so that M = c¢,n? + O(n). The
minimum, m, defined when all parameters are integers, in many cases
satisfies m = c¢,n> + o(n?), where c, is not always readily computable.

Holder’s inequality (1.2) and Jensen’s inequality (1.3) — see (3], p. 28
— state that for all x with x, = 0 (x = 0),

(1.2) My(x)M:(x)=M)(x)ifap + cr=bganda,b,c,p,q,r=0
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