APPLICATIONS OF DIFFERENTIATION OF \mathcal{L}_p -FUNCTIONS TO SEMILATTICES

P. H. MASERICK

Let *S* be a commutative semigroup with identity 1 such that $x^2 = x$ **for each** $x \in S$ (i.e. *S* is a semilattice). Let Γ denote the set of **semicharacters equipped with topology of simple convergence and** *μ* **be a fixed probability measure on Γ. Those real-valued functions f on** *S* **which admit disintegrations of the form** $f(x) = \int_{\Gamma} \rho(x) d\mu_f(\rho)$ where either $d\mu_f = f'd\mu$ with $f' \in L_p(\mu)$ ($1 \leq p \leq \infty$) or μ_f is singular with respect to *μ,* **are characterized. This extends the previous characterization of Alo and Korvin from the case where** *p* is either 1 or ∞ to all $p \in [1, \infty]$. Applications of this theory to the classical L_p -spaces on the *n*-cube are **also presented. The main applications occur upon specializing to the case where** *S* **is a Boolean algebra and the functions on** *S* **that are being disintegrated are additive. Not only is the Darst decomposition theorem** easily recovered, but also the theory of V^P -spaces of set functions **introduced by Bochner and extended by Leader is reproved from the point of view of "differentiation". As a by-product, it is shown that every non-atomic probability measure is in the closed convex hull (topology of simple convergence) of those zero-one-valued additive set functions which are not countably additive; a curious result when applied to Lebesgue measure.**

1. Preliminary. For each $x \in S$, the shift operator E_x is defined on the class of all real-valued functions $f\mid S \to \mathbf{R}$ by $(E_x f)(y) = f(xy)$. Observe that $E_x E_y = E_{xy}$ and E_1 is the identity operator which we will also denote by I . We will be interested in certain difference operators of the form $\Delta = E_x \prod_{j=1}^k (I - E_{x_j})$ where $x, x_1, \ldots, x_k \in S$ and introduce the notation $\Delta f(yx; \{x_i\}) = (\Delta f)(y)$, at all times distinguishing between the function Δf and its evaluation $(\Delta f)(y)$, at y. It follows that $\Delta f(1)$ is the th difference of $f(\Delta f(x; x_1, \ldots, x_k))$ as defined in [6 and 8]. Recall that a real-valued function f on S is called *completely monotonic* (CM) if $(\Delta f)(1)$ ≥ 0 for all choices of Δ . The class CM(S) of all completely monotonic functions is the same as the "positive definite functions" discussed in [12] and the difference operator Δ can be seen to be the operator "L" defined therein. Let $X = \{x_1, \ldots, x_k\}$ be a finite subset and $\Lambda_X(\Lambda)$, when X is understood) denote the set of all σ_X (σ , when X is understood) of zero-one-valued functions on $\{1, 2, \ldots, k\}$ and let Δ_{σ} denote the dif ference operator $\prod_{j=1}^{k} (E_{x_j})^{\sigma_j} (I - E_{x_j})^{1 - \sigma_j}$, where we adopt the convention that an operator (or member of any semigroup) to the power 0 is the identity even if that member is 0 itself. If f is a real-valued function on S then, following [6], we set $|| f ||_X = \sum_{\sigma \in \Lambda_X} |\Delta_{\sigma} f(1)|$. The triangle inequality implies $|| f ||_X$ is an increasing function of X (ordered by inclusion) and