ULTRAFILTERS AND MAPPINGS

TAKESI ISIWATA

We give characterizations of closed, quasi-perfect, d-, Z-, WZ-, W^* -open, N-, WN-, W_rN - and other maps using closed or open ultrafilters and investigate relations between these maps and various properties as generalizations of realcompactness, i.e., almost-, a-, c- and wa-real compactness, cb^* -ness and weak cb^* -ness. Finally we establish several theorems about the perfect W^* -open image of a weak cb^* space and its application to the absolute E(X) of a given space X.

We characterize closed, Z-, WZ-, N- and WN-maps by closed ultrafilters in §1 and show that φ is W*-open iff $\varphi^{\#}$ is an open ultrafilter for each open ultrafilter \mathfrak{A} in §2. In §3, introducing the notion of *-open map, we show that $\beta\varphi$ is open iff φ is a *-open W_r N-map iff there is \mathfrak{A}^p with $\varphi^{\#}\mathfrak{A}^p = \mathfrak{V}^q$ for each $q \in \beta Y$, each \mathfrak{V}^q and each $p \in (\beta\varphi)^{-1}q$. In §4, we discuss invariance concerning CIP of closed or open ultrafilters under various maps and establish invariances and inverse invariance of various properties as a generalization of realcompactness under suitable maps in §5. In §6, we give several theorems about the perfect W*-open image of weak cb^* spaces which contain, as corollaries, known results concerning the absolute E(X) of X.

Throughout this paper, by a space we mean a completely regular Hausdorff space and assume familiarity with [3] whose notion and terminology will be used throughout. We denote by $\varphi: X \to Y$ a continuous onto map and by $\beta X(\nu X)$ the Stone-Čech compactification (realcompactification) of X and by $\beta \varphi$ the Stone extension over βX of φ . In the sequel, we use the following notation and abbreviation. N = the set of positive integers, CIP = countable intersection property, nbd = neighborhood, $\mathcal{F}^p =$ a closed ultrafilter converging to p. We denote by $\mathcal{F}(\mathfrak{A})$ a closed (open) ultrafilter on X and by $\mathcal{E}(\mathcal{V})$ a closed (open) ultrafilter on Y. $\varphi^{\#} \mathcal{F} = \{E \subset Y; \varphi^{-1}E \in \mathcal{F} \text{ and } E \text{ is closed in } Y\}$. Similarly define $\varphi^{\#} \mathfrak{A}$.

1. Closed ultrafilters.

1.1. In the sequel, we use frequently the following results.

(1) If $p \in \bigcap \operatorname{cl}_{\beta X} \varphi^{-1} \mathcal{E}^q = \bigcap \{\operatorname{cl}_{\beta X} \varphi^{-1} E; E \in \mathcal{E}^q\}$, then there is \mathcal{F}^p with $\varphi^{\#} \mathcal{F}^p = \mathcal{E}^q$. For, $\mathcal{Q} = \{\varphi^{-1} E \cap F; E \in \mathcal{E}^q, F \in N(p)\}$ is a closed filter base where N(p) is a closed nbd base of p in βX . Obviously $\mathcal{Q} \to p$. Thus any \mathcal{F}^p containing \mathcal{Q} has the property $\varphi^{\#} \mathcal{F}^p = \mathcal{E}^q$. It is easily seen that the same method above can be applied to open ultrafilter and