ON A NEW TYPE OF *L*-FUNCTION FOR ALGEBRAIC CURVES OVER FINITE FIELDS

DAVID GOSS

Recently there has emerged a new theory of curves over a finite field. This theory is exciting in that it establishes previously unknown analogies between cyclotomic fields and function fields over a finite field. An extremely important aspect of this work is a new type of L-series for these function fields. These L-series bear quite remarkable and exciting similarities to classical L-series of number fields. The purpose of this paper is to describe these new L-series in detail.

TABLE OF CONTENTS

INTRODUCTION
1. BACKGROUND
2. THE THEORY AT INFINITY
2.1 Basic concepts
2.2 A remark on the values of Dirichlet series
2.3 Definition of π -adic functions and their analytic continuation
2.4 Complements
3. DESCRIPTION OF VALUES AT POSITIVE INTEGER POWERS
3.1 The Γ-ideal
3.2 Special values of zeta functions at positive integral powers $\equiv 0(r-1)$
3.3 Special values of partial zeta-functions at positive integral powers
4. THE RELATIVE ZETA-FUNCTIONS
5. THE THEORY WHEN s_1 IS A NEGATIVE INTEGER
5.1 The algebraicity of L-series for $s_1 = -i$
5.2 Some trivial zeros for zeta and L-functions
5.3 Some additional results when $A = \mathbf{F}_r[T]$
5.4 The v-adic theory and interpolation
5.5 A remark on functional equations
6. THE CONNECTION WITH DISTRIBUTION THEORY
6.1 Distribution and measures
6.2 The π -adic theory
6.3 Group theoretic interpretation of zeros
6.4 The v -adic theory
7. GALOIS GROUP INTERPRETATION VIA CLASS-FIELD THEORY 179
REFERENCES

Our desire to study such functions arose out of the following fact (discovered by L. Carlitz and independently, but much later, by the author): Let $i \in \mathbb{N}^+$. Then there exists a non-zero constant λ such that the convergent 1/T-adic sum

$$\lambda^{-i} \sum_{0 \neq \beta \in \mathbf{F}_r[T]} \beta^{-i}, \quad i \equiv 0(r-1),$$