ON THE ZETA FUNCTION FOR FUNCTION FIELDS OVER F_n

EMERY THOMAS

We consider here the zeta function for a function field defined over a finite field F_p . For each inter j, $\zeta(j)$ is a polynomial over F_p , as is $\zeta'(j)$, the "derivative" of zeta. In this note we compute the degree of these polynomials, determine when they are the constant polynomial and relate them to the polynomial gamma function.

In a recent series of papers D. Goss has introduced the notion of a zeta function $\zeta(j)$ for rational function fields over F_r , where $r = p^k$, with p a rational prime. In particular, for each positive integer i, with $i \neq 0$ $(r-1), \zeta(-i) \in F_r[t]$. Goss also defines the "derivative" of ζ, ζ' , with $\zeta'(-i) \in F_r[t]$ if $i \equiv 0$ (r-1). We combine these special values of ζ and ζ' into a single function $\beta(n)$ (with n = -i) defined by:

(1)
$$\beta(0) = 0, \quad \beta(1) = 1,$$

 $\beta(n) = 1 - \sum_{\substack{i=1\\i \equiv n(s)}}^{n-1} {n \choose i} t^i \beta(i), \quad n \ge 2,$

where s = r - 1. Thus, by (3.9) and (3.10) of [2],

(2)
$$\beta(n) = \begin{cases} \zeta(-n), & n \neq 0 \ (s) \\ \zeta'(-n), & n \equiv 0 \ (s) \end{cases}.$$

An important situation where these functions arise is in determining the class numbers of certain extension fields over $F_r[t]$ (modeled on cyclotomic fields). If P is a prime polynomial in $F_r[t]$, Goss defines class numbers $h^+(P)$ and $h^-(P)$ associated to P, in the classical fashion, and shows that their study (à la Kummer) involves the polynomials $\zeta(-i)$ and $\zeta'(-i)$. Thus it is important that we know certain facts about these functions, and hence about $\beta(n)$. Specifically, when is $\beta(n) = 1$? What is the degree of $\beta(n)$? When does $\beta(n)$ factor? In this note we give some answers to these questions, for the case r = p.

REMARK. I am indebted to Goss for bringing this material to my attention.