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SPLITTINGS OF FINITE GROUPS

DEAN HICKERSON

Let G be a group, written additively, M a set of integers, and S a
subset of G. We will say that M and S form a splitting of G if every
nonzero element of G has a unique representation as a product ms with
m 6 M and s G S, while 0 has no such representation. (Here "ms"
denotes the sum of m s's if m > 0 and denotes — (( — m)s) if m < 0.)
Splittings arise in connection with the problem of tiling Euclidean space
by translates of certain unions of unit cubes, called "crosses" and
"semicrosses".

In this paper, we develop a counting technique which gives informa-
tion about SUM and G are known. This technique is used to reduce the
study of splittings of finite abelian groups to those of nonsingular
splittings and of purely singular splittings. (A splitting is nonsingular if
every element of M is relatively prime to | G |; it is purely singular if, for
every prime divisor p of | G | , some element of M is divisible by p.)
Next, it is shown that every splitting of a noncyclic abelian p-group is
nonsingular. A construction is then given which yields many purely
singular splittings.

We then discuss a number of results and examples, including some
infinite and nonabelian groups, and close with a list of open problems.
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