ON SUMS OF RUDIN-SHAPIRO COEFFICIENTS II

JOHN BRILLHART, PAUL ERDÖS AND PATRICK MORTON

Let $\{a(n)\}$ be the Rudin-Shapiro sequence, and let $s(n) = \sum_{k=0}^{n} a(k)$ and $t(n) = \sum_{k=0}^{n} (-1)^{k} a(k)$. In this paper we show that the sequences $\{s(n)/\sqrt{n}\}$ and $\{t(n)/\sqrt{n}\}$ do not have cumulative distribution functions, but do have logarithmic distribution functions (given by a specific Lebesgue integral) at each point of the respective intervals $[\sqrt{3}/5, \sqrt{6}]$ and $[0,\sqrt{3}]$. The functions a(x) and s(x) are also defined for real $x \ge 0$, and the function $[s(x) - a(x)]/\sqrt{x}$ is shown to have a Fourier expansion whose coefficients are related to the poles of the Dirichlet series $\sum_{n=1}^{\infty} a(n)/n^{\tau}$, where Re $\tau > \frac{1}{2}$.

1. Introduction. In this paper we are concerned with the Rudin-Shapiro sums

(1.1)
$$s(x) = \sum_{k=0}^{[x]} a(k),$$

(1.2)
$$t(x) = \sum_{k=0}^{[x]} (-1)^k a(k),$$

where the numbers a(k) are defined recursively by

(1.3)
$$a(2k) = a(k), \quad a(2k+1) = (-1)^k a(k), \quad k \ge 0, a(0) = 1.$$

An explicit formula for a(k) is given by

(1.4)
$$a(k) = (-1)^{e(k)},$$

where $e(k) = \sum_{i=0}^{s-1} \varepsilon_i \varepsilon_{i+1}$ and $k = \sum_{i=0}^{s} \varepsilon_i 2^i$, $\varepsilon_i = 0$ or 1. (See [1], Satz 1.)

The properties of these sums have been developed in [1], where it is shown that

(1.5)
$$\sqrt{\frac{3}{5}} < \frac{s(n)}{\sqrt{n}} < \sqrt{6}$$
,

$$(1.6) 0 \le \frac{t(n)}{\sqrt{n}} < \sqrt{3}$$

for $n \ge 1$, and that the sequences $\{s(n)/\sqrt{n}\}$ and $\{t(n)/\sqrt{n}\}$ are dense in the intervals $[\sqrt{3/5}, \sqrt{6}]$ and $[0, \sqrt{3}]$.