CHARACTERIZATIONS OF COMPLETELY NONDETERMINISTIC STOCHASTIC PROCESSES

PETER BLOOMFIELD, NICHOLAS P. JEWELL AND ERIC HAYASHI

A discrete weakly stationary Gaussian stochastic process $\{x(t)\}$, is completely nondeterministic if no non-trivial set from the σ -algebra generated by $\{x(t): t > 0\}$ lies in the σ -algebra generated by $\{x(t): t \le 0\}$. In [8] Levinson and McKean essentially showed that a necessary and sufficient condition for complete nondeterminism is that the spectrum of the process is given by $|h|^2$ where h is an outer function in the Hardy space, H^2 , of the unit circle in C with the property that h/\bar{h} uniquely determines the outer function h up to an arbitrary constant. In this paper we consider several characterizations of complete nondeterminism in terms of the geometry of the unit ball of the Hardy space H^1 and in terms of Hankel operators.

1. Introduction. In [10] Sarason defines a property of a discrete weakly stationary Gaussian stochastic process, $\{x(t)\}$, which he calls complete nondeterminism. This condition is that no set from the future of the process (i.e. the σ -algebra generated by the random variables x(t) for t > 0) lies in the past (i.e. the σ -algebra generated by x(t) for $t \le 0$), except for null sets and the complements of null sets. In the spectral representation this condition becomes the following. Let m be the spectral measure of the process and let \mathcal{P} denote the span in $L^2(m)$ of the exponentials $e^{in\theta}$ with $n \le 0$ where functions are defined on T, the unit circle in C. Let \mathcal{F} denote the span in $L^2(m)$ of the exponentials $e^{in\theta}$ with n > 0. Then complete nondeterminism is equivalent to the condition that $\mathcal{P} \cap \mathcal{F} = \{0\}$. It is clear that this condition reflects a certain kind of independence (in a statistical sense) of the past, \mathcal{P} , and the future, \mathcal{F} .

It is of interest to characterize those measures m on T which lead to completely nondeterministic (cnd) processes. In [10] a necessary and sufficient condition for complete nondeterminism was stated as the measure m being absolutely continuous with respect to Lebesgue measure, $d\theta$, with log $(dm/d\theta)$ integrable. Unfortunately this characterization is incorrect. In [8, p. 105] Levinson and McKean essentially describe a partial characterization of cnd processes which we discuss in §3. This paper