A MINIMAL UPPER BOUND ON A SEQUENCE OF TURING DEGREES WHICH REPRESENTS THAT SEQUENCE

HAROLD T. HODES

Given a sequence of Turing degrees $\langle a_i \rangle_{i < \omega}$, $a_i < a_{i+1}$, is there a function of f such that (i) deg(f) is a minimal upper bound on $\langle a_i \rangle_{i < \omega}$, and (ii) $\{ deg((f)_n) \mid n < \omega \} = \{ a_i \mid i < \omega \}$? In this note we show that the most natural minimal upper bound on $\langle a_i \rangle_{i < \omega}$ is of the form deg(f) for such an f.

Because there seem to be a cluster of interesting notions and question related to this problem, we start with some definitions. Fix a recursive pairing function $(x, y) \mapsto \langle x, y \rangle$; $(f)_x(y) = f(\langle x, y \rangle)$. Where I is a set of Turing degrees and $f \in \omega$, f represents (subrepresents) I iff I = $\{ \deg((f)_n) \mid n < \omega \}$ $(I \subseteq \{ \deg((f)_n) \mid n < \omega \})$. For $I' \subseteq I$, I' is cofinal in I iff for every $a \in I$ there is a $b \in I'$ with $a \le b$. f weakly represents (weakly subrepresents) I iff f represents (subrepresents) some I' cofinal in I. A degree a represents (subrepresents, weakly represents, weakly subrepresents) I iff some $f \in a$ does so. I is an ideal iff I is non-empty closed downward and under join.

Terminology. A tree T is a total function from $2^{<\omega} = \text{Str}$ into Str so that for any $\delta \in \text{Str}$, $T(\delta \ 0)$ and $T(\delta \ 1)$ are incompatible extensions of $T(\delta)$. $\delta \in \text{Str}(s)$ iff $\delta \in \text{Str}$ and $\text{dom}(\delta) = s$. A pre-tree of height s is a function T: $\text{Str}(s) \to \text{Str}$ where for all $\delta \in \text{Str}(s-1)$, $T(\delta \ 0)$ and $T(\delta \ 1)$ are incompatible extensions of $T(\delta)$. For $\delta \in \text{Str}$ and $A \in \ 2$, $\delta \subseteq A$ iff for all $i \in \text{dom}(\delta)$, $\delta(i) = A(i)$. Where T is a tree, $B \in [T]$ iff for some $A \in \ 2$; for all n, $T(A \upharpoonright n) \subset B$; (i.e. B is a path through T). Where T is a pre-tree of height s, $B \in [T]$ iff for some $\delta \in \text{Str}$, $\text{dom}(\delta) = s$ and $T(\delta) \subset B$.

Where T is a tree and $A \in {}^{\omega}2$, let

$$\operatorname{Code}(T, A)(\delta) = T(\langle A(0), \delta(0), \dots, \delta(n-1), A(n) \rangle),$$

where $n = \text{dom}(\delta) - 1$. Notice: $\text{Code}(T, A)(\langle \rangle) \stackrel{\supset}{\Rightarrow} T(\langle \rangle)$. Where T is a pre-tree of height $\leq 2n + 1$ and $\tau \in \text{Str}$, $\text{dom}(\tau) \geq n$, $\text{Code}(T, \tau)$ is defined similarly. For T a tree (pre-tree) and $B \in [T]$, let Coded(B, T) be the real $A \in {}^{\omega}2$ (string τ) such that A(e) = i ($\tau(e) = i$) iff for some δ , $T(\delta) \subseteq B$ and $\delta(2e) = i$. If T is a pre-tree of height 2n or 2n + 1,