A REMARK ON THE KASPAROV GROUPS $Ext^{i}(A, B)$

ALAIN VALETTE

Let A and B be C*-algebras. We show that, under reasonable assumptions (A unital, nuclear and separable, B with a strictly positive element), the groups Ext'(A, B) of Kasparov are isomorphic—up to a shift of dimension—to the K-theory groups of some commutant of A in the outer multiplier algebra of $B \otimes \mathcal{K}$. The main tool to prove this is Kasparov's "generalized theorem of Voiculescu". Following an idea of Paschke, we use our result to get a part of the "generalized Pimsner-Voiculescu exact sequence" for crossed products.

0. Introduction. The purpose of this note is to provide a K-theoretic interpretation for the Kasparov groups $\text{Ext}^{0}(A, B)$ and $\text{Ext}^{1}(A, B)$ (where A, B are C*-algebras), by realizing them as the K-groups of some commutant of A in the outer multiplier algebra $Q(B \otimes \mathfrak{K})$ of $B \otimes \mathfrak{K}$ (the relevant definitions are given in §1).

The role of commutants can be explained very simply. Let $\tau: A \rightarrow Q(B \otimes \mathbb{K})$ be an extension of A, and p be a projection in the commutant $\tau(A)'$ of $\tau(A)$; the mapping

$$\alpha_{\tau}(p): A \to Q(B \otimes \mathfrak{K})$$

defined by

$$\alpha_{\tau}(p)(a) = p \cdot \tau(a)$$

is still an extension of A. Similarly, if u is a unitary in $\tau(A)'$, the mapping

$$\alpha_{\tau}(u): C_0(\mathbf{R}) \otimes A \to Q(B \otimes \mathcal{K})$$

defined by

$$\alpha_{\tau}(u)(f\otimes a)=f(u)\cdot\tau(a)$$

is an extension of $C_0(\mathbf{R}) \otimes A$. It is shown in Lemma 1 that these mappings α_{τ} extend to well-defined homomorphisms $K_i(\tau(A)') \to \operatorname{Ext}^{i+1}(A, B)$ $(i \in \mathbb{Z}/2)$. Moreover, we show in Proposition 3 that under mild assumptions on A and B, it is possible to find an extension τ such that α_{τ} is actually an isomorphism.

1. Definitions and notations. Let A and B be C^* -algebras. In the study of extensions of the form

$$0 \to B \otimes \mathfrak{K} \to E \to A \to 0$$