THE DETERMINANTAL IDEALS OF LINK MODULES. II

LORENZO TRALDI

Let *H* be the multiplicative free abelian group of rank $m \ge 1$. Suppose $0 \to B \to A \to IH \to 0$ is a short exact sequence of Z*H*-modules, and the module *A* is finitely generated. Then *B* is also a finitely generated Z*H*-module, and for any $k \in \mathbb{Z}$ the determinantal ideals of *A* and *B* satisfy the equality

$$E_k(A): (IH)^p = E_{k-1}(B): (IH)^q$$

for all sufficiently large values of p and q. Furthermore, if this exact sequence is the link module sequence of a tame link of m components in S^3 , then

$$E_k(A) = E_{k-1}(B) : (IH)^{\binom{m-1}{2}}$$

whenever $k \ge m$.

1. Introduction. Let *H* be the multiplicative free abelian group of rank $m \ge 1$, and **Z***H* its integral group ring; if ε : **Z***H* \rightarrow **Z** is the augmentation map then its kernel is the augmentation ideal *IH* of **Z***H*. Following [6], we will call a short exact sequence

(1)
$$0 \to B \xrightarrow{\phi} A \xrightarrow{\psi} IH \to 0$$

of **Z***H*-modules and homomorphisms an *augmentation sequence*, provided that the **Z***H*-module *A* is finitely generated. The module *B* is then also finitely generated, and so for any $k \in \mathbb{Z}$ there are well-defined determinantal ideals $E_k(A)$, $E_k(B) \subseteq \mathbb{Z}H$.

In [6] we discussed the relationship between the product ideals $E_k(A) \cdot (IH)^p$ and $E_{k-1}(B) \cdot (IH)^q$ for various values of k, p, and q. In the present paper, instead, we will consider the relationship between the various quotient ideals $E_k(A) : (IH)^p$ and $E_{k-1}(B) : (IH)^q$. (We recall the definition: if $U, V \subseteq \mathbb{Z}H$ are ideals then the quotient ideal U: V is $\{x \in \mathbb{Z}H \mid xV \subseteq U\}$.)

At first glance, it may seem that if $U \subseteq \mathbb{Z}H$ is an ideal the quotient ideals $U: (IH)^p$ and the various product ideals $U \cdot (IH)^q$ are, in some