A MARCINKIEWICZ CRITERION FOR *L^p*-MULTIPLIERS

HENRY DAPPA

Suppose *m* is a bounded measurable function on the *n*-dimensional Euclidean space \mathbb{R}^n . Define a linear operator T_m by $(T_m f) = mf$, where $f \in L^2 \cap L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and f denotes the Fourier transform of *f*:

$$f'(\xi) := \int f(x) e^{-ix\xi} dx \qquad \left(x\xi := \sum_{j=1}^n x_j \xi_j\right).$$

(We omit the domain of integration if it is the whole \mathbb{R}^n .) If T_m is bounded from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$, then *m* is called an L^p -(Fourier) multiplier, denoted $m \in M_p(\mathbb{R}^n)$. The norm of *m* coincides with the operator norm of T_m .

THEOREM 1. Let m and m' be locally absolutely continuous on $(0,\infty)$ and

$$B := \|m\|_{\infty} + \sup_{j \in \mathbb{Z}} \int_{2^{j}}^{2^{j+1}} r |m''(r)| dr < \infty.$$

Then $m(|\xi|) \in M_p(\mathbb{R}^n)$ for all p with $1 \le 2n/(n+3)$ $<math>\le \infty$; in particular, $||m||_{M_p(\mathbb{R}^n)} \le cB$ with c independent of m.

1. To prove Theorem 1 we need a result stated in Theorem 2 about the following Littlewood-Paley function:

(1.1)
$$g_{\lambda}(f)(x) = \left(\int_0^\infty |S_t^{\lambda+1}(f;x) - S_t^{\lambda}(f;x)|^2 u(t) \frac{dt}{t}\right)^{1/2},$$

where

$$S_t^{\lambda}(f;x) = \int \left(1 - \frac{|\xi|^2}{t^2}\right)_+^{\lambda} f^{*}(\xi) e^{i\xi x} d\xi \qquad (r_+ = \max(0,r))$$

denotes the Bochner-Riesz means of f of order λ , u is a nonnegative measurable function on $(0, \infty)$ satisfying

(1.2)
$$t \le R(t) = \int_0^t u(s) \, ds \le ct, \quad t > 0,$$

and f belongs to S, the space of all infinitely differentiable rapidly decreasing functions on \mathbb{R}^n .