INEQUALITIES FOR EIGENVALUES OF THE BIHARMONIC OPERATOR

G. N. HILE AND R. Z. YEH

Let D be a bounded domain in \mathbb{R}^m with smooth boundary. The first n + 1 eigenvalues for the problem

$$\Delta^2 u - \mu u = 0$$
 in D , $u = \frac{\partial u}{\partial n} = 0$ on ∂D

satisfy the inequality

$$\sum_{i=1}^{n} \frac{\sqrt{\mu_{i}}}{\mu_{n+1} - \mu_{i}} \ge \frac{m^{2} n^{3/2}}{8(m+2)} \left(\sum_{i=1}^{n} \mu_{i}\right)^{-1/2}$$

For the first two eigenvalues we have the stronger bound

$$\mu_2 \le 7.103 \ \mu_1 \quad (\text{in } R^2),$$

 $\mu_2 \le 4.792 \ \mu_1 \quad (\text{in } R^3).$

The first two eigenvalues for the problem

$$\Delta^2 u + \nu \Delta u = 0$$
 in D , $u = \frac{\partial u}{\partial n} = 0$ on ∂D

satisfy the inequality

$$\nu_2 \le 2.5 \quad \nu_1 \quad (\text{in } R^2), \\
\nu_2 \le 2.12 \, \nu_1 \quad (\text{in } R^3).$$

Introduction. Let D be a bounded domain in \mathbb{R}^m , $m \ge 2$, with smooth boundary ∂D . For the case m = 2, Payne, Polya and Weinberger [6] obtained upper estimates, independent of the domain, for eigenvalues of the three well-known eigenvalue problems:

(1) $\Delta u + \lambda u = 0$ in D, u = 0 on ∂D , ∂u

(2)
$$\Delta^2 u - \mu u = 0$$
 in D , $u = \frac{\partial u}{\partial n} = 0$ on ∂D ,

(3)
$$\Delta^2 u + \nu \Delta u = 0$$
 in D , $u = \frac{\partial u}{\partial n} = 0$ on ∂D .

Let

$$0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots,$$

$$0 < \mu_1 \le \mu_2 \le \mu_3 \le \cdots,$$

$$0 < \nu_1 \le \nu_2 \le \nu_3 \le \cdots$$