GENERALIZED ORDERED SPACES WITH CAPACITIES

H. R. BENNETT AND D. J. LUTZER

We show that any GO-space having a capacity in the sense of Ščepin has a G_{δ} -diagonal and is perfect. In addition, such a space has a σ -discrete dense subset and a dense metrizable subspace, and any GOspace having a capacity and a point-countable base (or having a σ -discrete dense subset and a point-countable base) is metrizable.

1. Introduction. In [14] Sčepin defined a *capacity* for a space X to be a family of functions $\{\epsilon_x | x \in X\}$ such that, for each closed $F \subset X$,

(C₁) $\varepsilon_x(F)$ is a non-negative real number with $\varepsilon_x(F) > 0$ iff $x \in Int(F)$,

(C₂) if $F_1 \subset F_2$ are closed then $\varepsilon_x(F_1) \le \varepsilon_x(F_2)$,

(C₃) for a fixed closed F, the function $x \to \varepsilon_x(F)$ is continuous,

(C₄) for a fixed x, if $\{F_{\alpha} | \alpha < \kappa\}$ is a family of closed sets satisfying $F_{\alpha} \supset F_{\beta}$ whenever $\alpha < \beta < \kappa$, then $\varepsilon_{x}(\bigcap_{\alpha} F_{\alpha}) = \inf_{\alpha} \varepsilon_{x}(F_{\alpha})$.

In that same paper Ščepin announced without proof that a linearly ordered topological space (LOTS) having a capacity is metrizable. The purpose of this note is to prove a more general result from which Ščepin's result follows immediately, namely, that any GO-space (= suborderable space) with a capacity has a G_{δ} -diagonal. (Recall that the class of GO-spaces is precisely the class of subspaces of LOTS.) Along the way to that result, we show that any GO-space with a capacity is *perfect* (i.e., closed sets are G_{δ}). In §4 we will discuss two old questions about perfect GO-spaces in the context of GO-spaces having a capacity, proving that a GO-space with a capacity has a σ -discrete dense subset and a GO-space with a capacity and a point-countable base must be metrizable. Finally, examples in §5 show that our results are sharp.

Terminology and notation not defined in this paper will follow [8, 11, 12].

2. Preliminary results and perfect normality. We proceed via a sequence of lemmas.

2.1. LEMMA. Any GO-space having a capacity is a first-countable space.