CHARACTERIZING THE DIVIDED DIFFERENCE WEIGHTS FOR EXTENDED COMPLETE TCHEBYCHEFF SYSTEMS

R. B. BARRAR AND H. L. LOEB

Newman and Rivlin have shown that there is a 1-1 correspondence between the nodes and weights of the nth order divided difference of n th degree polynomials. Their method applies only to polynomials. In this paper we develop a new approach and apply it to extend their results to the setting of Extended Complete Tchebycheff Systems.

0. Introduction. In [7] Newman and Rivlin (see also the reference there to S. Karlin's results) were able to characterize the weights which appear in the *n*th order divided difference formula with respect to the base functions $\{u_j(x) = x^j\}_{j=0}^n$ and to establish a 1-1 correspondence between these weights and the corresponding set of nodes, $0 = x_0 < x_1 < \cdots < x_n$, used in the formula. We propose in this paper to extend this result to the setting where the family $\{u_j(x)\}_{j=0}^n$ forms an Extended Complete Tchebycheff System (E.C.T.S.) on $[0, \infty)$. This means for each k, where $0 \le k \le n$, any non-trivial linear combination of the functions $\{u_0, \ldots, u_k\}$ has at most k zeros (including multiplicities) in $[0, \infty)$ where each $u_j \in C^n[0, \infty)$. We further assume that $u_0(x) \equiv 1$. For the remainder of this paper we shall postulate that these basic hypotheses concerning $\{u_i\}_{i=0}^n$ hold.

Among the E.C.T.S. for which these results are valid, we will highlight the families generated by the Cauchy Kernel and the Exponential Kernel.

1. Statement of problem. Let

(1)
$$S = \{ \mathbf{x} = (x_1, \dots, x_n) \subset \mathbb{R}^n : 0 < x_1 < \dots < x_n \}, \quad x_0 \equiv 0.$$

A is defined to be the set of all $\mathbf{a} = (a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ such that the following properties are valid

(2)
(i)
$$(-1)^{n-i}a_i > 0$$
 $(i = 0, 1, ..., n)$
(ii) $\sum_{i=0}^n a_i = 0$;
(iii) $(-1)^{n-j}\sum_{i=j}^n a_i > 0, \quad j = 1, ..., n.$