SPACES DETERMINED BY POINT-COUNTABLE COVERS

G. GRUENHAGE, E. MICHAEL AND Y. TANAKA

Recall that a collection \mathcal{P} of subsets of X is *point-countable* if every $x \in X$ is in at most countably many $P \in \mathcal{P}$. Such collections have been studied from several points of view. First, in characterizing various kinds of *s*-images of metric spaces, second, to construct conditions which imply that compact spaces and some of their generalizations are metrizable, and finally, in the context of meta-Lindelöf spaces. This paper will make some contributions to all of these areas.

1. Introduction. A space X is determined by a cover \mathcal{P} , or \mathcal{P} determines X,² if $U \subset X$ is open (closed) in X if and only if $U \cap P$ is relatively open (relatively closed) in P for every $P \in \mathcal{P}$. (For example, X is determined by \mathcal{P} if \mathcal{P} is locally finite or if $\{P^0: P \in \mathcal{P}\}$ covers X.) We will explore this notion in the context of point-countable covers.

Within the class of k-spaces, spaces determined by point-countable covers turn out to be related to spaces having a point-countable k-network. Recall that a cover \mathcal{P} of X is a k-network for X if, whenever $K \subset U$ with K compact and U open in X, then $K \subset \bigcup \mathcal{F} \subset U$ for some finite $\mathcal{F} \subset \mathcal{P}$. Such collections have played a role in \aleph_0 -spaces (i.e., regular spaces with a countable k-network $[\mathbf{M}_1]$) and \aleph -spaces (i.e., regular spaces with a σ -locally finite k-network [0]).³

Diagram I below gives a convenient overview of some of our principal results. The numbered conditions are defined as follows, where in (1.3) and elsewhere in this paper we adopt the convention that, if \mathcal{R} is a collection of sets, then \mathcal{R}^* denotes { $\bigcup \mathcal{F} : \mathcal{F} \subset \mathcal{R}, \mathcal{F}$ finite}.

(1.1) X has a point-countable cover \mathcal{P} such that each open $U \subset X$ is determined by $\{P \in \mathcal{P} : P \subset U\}$.

¹All spaces are assumed to be Hausdorff.

²We use "X is determined by \mathfrak{P} " instead of the usual "X has the weak topology with respect to \mathfrak{P} ". The term "weak topology" is used in a different way by functional analysts, to whom it implies that X has the smallest (not the largest) topology that gives each member of \mathfrak{P} its subspace topology. Our terminology avoids this problem, and is also shorter.

³While the elements of the defining k-network may always be chosen closed in \aleph_0 -spaces and in \aleph -spaces (by simply taking closures), that is not always true for point-countable k-networks (see Example 9.2).