CANCELLATION OF LOW-RANK VECTOR BUNDLES

K. R. GOODEARL

The purpose of this paper is to show that even though vector bundles cannot in general be cancelled from direct sums (Whitney sums), in certain low-rank situations vector bundles can be cancelled at the expense of complexifying or quaternionifying the remaining terms. To be specific, let λ , ξ_1 , ξ_2 be vector bundles over a paracompact space X, such that $\lambda \oplus \xi_1 \cong \lambda \oplus \xi_2$. First assume that these are real vector bundles. If λ is a line bundle of finite type, then the complexifications of ξ_1 and ξ_2 are isomorphic, and hence $2\xi_1 \approx 2\xi_2$ (where $2\xi_i$ denotes the direct sum of two copies of ξ_i), while if λ is a direct sum of two line bundles of finite type, then the quaternionifications of ξ_1 and ξ_2 are isomorphic, and hence $4\xi_1 \simeq 4\xi_2$. Now assume that these are complex vector bundles. If λ is the complexification of a real line bundle of finite type (in particular, λ could be a trivial complex vector bundle of rank 1), then the quaternionifications of ξ_1 and ξ_2 are isomorphic, and hence $\xi_1 \oplus \xi_1 \cong \xi_2 \oplus \xi_2$ (where $\bar{\xi}_i$ denotes the conjugate vector bundle to ξ_i). These results are independent of the dimension of the space X, and also independent of the dimensions of the fibres of ξ_1 and ξ_2 . The same results also hold for smooth vector bundles over a smooth manifold.

I. Background on vector bundles. Let F be one of R, C, or H. We work with F-vector bundles over a topological space X in the same generality as Swan [9], so that we do not require the dimensions of the fibres of a vector bundle ξ to be constant. (However, the local triviality condition on ξ forces the fibre-dimension of ξ to be locally constant, and hence the fibre-dimension will be constant if X is connected.) A vector bundle ξ over X is said to be of *finite type* provided that there exists a finite open covering U_1, \ldots, U_n of X such that the restriction of ξ to each U_i is trivial. (In particular, this places a bound on the fibre-dimension of ξ .) Of course if X is compact, then all vector bundles over X are of finite type.

The basic mechanism for algebraic investigations of F-vector bundles over X is the relationship between such vector bundles and modules over the ring $C(X, \mathbf{F})$ of continuous F-valued functions on X. This relationship is effected through the section functor Γ , which assigns to each F-vector bundle ξ the $C(X, \mathbf{F})$ -module $\Gamma(\xi)$ of continuous sections of ξ , and which assigns to each F-vector bundle map $f: \xi \to \eta$ the induced $C(X, \mathbf{F})$ -module homomorphism $\Gamma(f): \Gamma(\xi) \to \Gamma(\eta)$. (In the case where $\mathbf{F} = \mathbf{H}$, a choice of right versus left vector spaces and modules is required for consistency. As we prefer to write homomorphisms on the left, let us stipulate that all our