A SPECTRAL DUALITY THEOREM FOR CLOSED OPERATORS

I. ERDELYI AND WANG SHENGWANG

The spectral duality theorem asserts that a densely defined closed operator T induces a spectral decomposition of the underlying Banach space X iff the conjugate T^* induces the same type of spectral decomposition of the dual space X^* . This theorem is known for bounded linear operators in terms of residual (S)-decomposability. In this paper we extend the spectral duality theorem to unbounded operators, under a general type of spectral decomposition. Our approach to the spectral duality leads through the successive conjugates T^* , T^{**} and T^{***} of T, under their domain-density assumptions.

1. Elements of local spectral theory for a closed operator. X is an abstract Banach space over the complex field C. If S is a set, we write \overline{S} for the closure, Int S for the interior, S^c for the complement, ∂S for the boundary, and $\operatorname{cov} S$ for the collection of all finite open covers of S. If S is a subset of C, then the above mentioned topological constructs are referred to the topology of C. Without loss of generality, we assume that for $S \subset C$, each $\{G_i\}_{i=0}^n \in \operatorname{cov} S$ has, at most, one unbounded set G_0 . An open $G \subset C$ is said to be a neighborhood of ∞ , in symbols $G \in V_{\infty}$, if for r > 0 sufficiently large, $\{\lambda \in \mathbb{C}: |\lambda| > r\} \subset G$. We write S^{\perp} for the annihilator of $S \subset X$ in X* (as well as that of $S \subset X^{***}$ in X***) and ${}^{\perp}S$ for the preannihilator of $S \subset X^*$ in X (or that of $S \subset X^{***}$ in X**). B(X) denotes the Banach algebra of all bounded linear operators which map X into X. I stands for the identity operator.

For a linear operator $T: D_T (\subset X) \to X$, we use the following notations: spectrum $\sigma(T)$, resolvent set $\rho(T)$, and resolvent operator $R(\cdot; T)$.

If *T* has the single valued extension property (SVEP) then, for $x \in X$, $\sigma_T(x)$ is the local spectrum, $\rho_T(x)$ is the local resolvent set and $x(\cdot)$ is the local resolvent function. For $S \subset \mathbf{C}$, an extensive use will be made of the spectral manifold $X(T, S) = \{x \in X: \sigma_T(x) \subset S\}$.

Inv *T* represents the lattice of all invariant subspaces under *T*. For $Y \in \text{Inv } T$, T | Y is the restriction of *T* to *Y* and T/Y denotes the coinduced operator on the quotient space X/Y with domain $D_{T/Y} = \{\hat{x} \in X/Y: \hat{x} \cap D_T \neq \emptyset\}$.

If not mentioned otherwise, throughout this paper T is a densely defined unbounded closed operator with domain and range in X.