PROJECTIVE SPACE AS A BRANCHED COVERING OF THE SPHERE WITH ORIENTABLE BRANCH SET

Robert D. Little

If $\mathbf{R} P^{n}$ is a branched covering of S^{n} with locally flat, orientable branch set, then $n=1,3$, or 7 .

1. Introduction. Let M be a closed, orientable PL n-manifold. A theorem of Alexander [2] states that every such manifold is a piecewise linear branched covering of the n-sphere, S^{n}, i.e. there is a finite-to-one open PL map $f: M \rightarrow S^{n}$. The subset of M where f fails to be a local homeomorphism is called the singular set and the image of the singular set is called the branch set. Brand [4] suggests the problem of determining the values of n for which $\mathbf{R} P^{n}$, real projective n-space, is a branched covering of S^{n} with branch set a locally flat submanifold of S^{n}, and he shows that if such a covering exists, then $n=2^{t} \pm 1$. We show that the values of n can be further limited if the branch set is orientable.

Theorem 1.1. If $\mathbf{R} P^{n}$ is a branched covering of S^{n} with locally flat, orientable branch set, then $n=1,3$, or 7 .

The converse of Theorem 1.1 is true in the cases $n=1$ or 3 : the identity map provides a branched covering of S^{1} and Hilden and Montesinos have shown, independently, that every closed, orientable 3-manifold is a branched covering of S^{3} with branch set a locally flat 1 -manifold, [6] and [9]. Theorem 1.1 shows that if the branch set is required to be orientable, $n=7$ is the only open case.
2. Normalized branched coverings. In [5], Brand proves a normalization theorem for smooth branched coverings. He uses his normalization theorem to show that there is a certain K-theoretic necessary condition for the existence of smooth branched coverings. In [4], Brand extended his normalization theorem to branched coverings with locally flat branch sets. He then showed that a branched covering with locally flat branch set is the pull-back of a universal smooth branched covering and hence must satisfy the same K-theoretic necessary conditions as a smooth branched covering.

If η is a 2-plane bundle over a complex X, let $\mu_{k}(\eta)$ be the 2-plane bundle obtained from η by the homomorphism $\mu_{k}: \mathrm{O}(2) \rightarrow \mathrm{O}(2)$ given by

