ONE-DIMENSIONAL PERTURBATIONS OF OPERATORS

JOSEPH G. STAMPFLI

The purpose of this note is three-fold. First, to show that certain rank one operators of small norm will split off a unitary piece from the shift; second, to apply this technique to the "Berg construction"; and, third, to exhibit a normal operator whose eigenspace structure is drastically altered by the addition of a rank one operator.

Throughout this paper $\mathscr{L}(\mathscr{H})$ will denote the algebra of bounded linear operators on a separable Hilbert space \mathscr{H} .

1. We begin with a proposition which tells us which rank one operators preserve an isometry.

PROPOSITION 1. Let S be any isometry. Let $F = a(\cdot, g)h$ where ||g|| = ||h|| = 1. Then S + F is isometric if and only if

(1)
$$\begin{cases} S: g \to e^{-i\theta}h \\ for some \ \theta \ real \\ S^*: h \to e^{i\theta}g \end{cases}$$

and

(2)
$$2\operatorname{Re} e^{-i\theta}a = -|a|^2.$$

Proof. To show S + F is isometric we must show

$$I = (S + F)^*(S + F) = I + S^*F + F^*S + F^*F$$

or equivalently $S^*F + F^*S + F^*F = 0$. Note that $F^* = \overline{a}(\cdot, h)g$. If $f \in \mathscr{H}$ then

(a)
$$S^*Ff = ae^{i\theta}(f, g)g$$
,
(b) $F^*Sf = \bar{a}e^{-i\theta}(f, g)g$, and
(c) $F^*Ff = |a|^2(f, g)g$.

Thus

$$(S^*F + F^*S + F^*F)f = \left[(ae^{i\theta} + \bar{a}e^{-i\theta}) + |a|^2 \right] (f,g)g = 0$$

if (2) holds.