WHEN THE CONTINUUM HAS COFINALITY ω_1

ARNOLD W. MILLER AND KAREL PRIKRY

In this paper we consider models of set theory in which the continuum has cofinality ω_1 . We show that it is consistent with $\neg CH$ that for any complete boolean algebra B of cardinality less than or equal to c (continuum) there exists an ω_1 -generated ideal J in $P(\omega)$ (power set of ω) such that B is isomorphic to $P(\omega) \mod J$. We also show that the existence of generalized Luzin sets for every ω_1 -saturated ideal in the Borel sets does not imply Martin's axiom.

Introduction. In §1 we prove our main result that it is consistent with \neg CH that every complete boolean algebra of cardinality $\leq c$ is isomorphic to $P(\omega) \mod J$ for some J ω_1 -generated. We think of this as generalizing Kunen's theorem that it is consistent with \neg CH that there is an ω_1 generated nonprincipal ultrafilter on ω .

For I an ideal in the Borel subsets of the reals we say that a set of reals X is a κ -I-Luzin set iff X has cardinality κ and for every A in I, $A \cap X$ has cardinality less than κ . If c is regular, then it follows easily from Martin-Solovay [9] that MA is equivalent to the statement "for every ω_1 -saturated σ -ideal I in the Borels there is a c-I-Luzin set". In §2 we show that the regularity of c is necessary. This answers a question of Fremlin [5].

We also show that it is consistent with $\neg CH$ that for every such I there exists an ω_1 -I-Luzin set. These results can be thought of as a weak form of the following conjecture.

Conjecture. It is consistent with $\neg CH$ that for every c.c.c partial order **P** of cardinality $\leq c$ there exist $\langle G_{\alpha} : \alpha < \omega_1 \rangle$ an ω_1 -sequence of **P**-filters such that for every dense $D \subseteq \mathbf{P}$ all but countably many G_{α} meet D.

Note that this is a trivial consequence of CH.

Next we give a result of Kunen that some restriction of the cardinality of **P** (e.g. $(2^{\omega_1})^+$) is necessary in our conjecture. We also show that for every c.c.c. **P** of cardinality $\leq \omega_2$ we can force (without adding reals) the existence of **P**-filters $\langle G_{\alpha}: \alpha < \omega_1 \rangle$ eventually meeting each dense subset of **P**.