WHEN THE CONTINUUM HAS COFINALITY ω_1 ## ARNOLD W. MILLER AND KAREL PRIKRY In this paper we consider models of set theory in which the continuum has cofinality ω_1 . We show that it is consistent with $\neg CH$ that for any complete boolean algebra B of cardinality less than or equal to c (continuum) there exists an ω_1 -generated ideal J in $P(\omega)$ (power set of ω) such that B is isomorphic to $P(\omega) \mod J$. We also show that the existence of generalized Luzin sets for every ω_1 -saturated ideal in the Borel sets does not imply Martin's axiom. **Introduction.** In §1 we prove our main result that it is consistent with \neg CH that every complete boolean algebra of cardinality $\leq c$ is isomorphic to $P(\omega) \mod J$ for some J ω_1 -generated. We think of this as generalizing Kunen's theorem that it is consistent with \neg CH that there is an ω_1 generated nonprincipal ultrafilter on ω . For I an ideal in the Borel subsets of the reals we say that a set of reals X is a κ -I-Luzin set iff X has cardinality κ and for every A in I, $A \cap X$ has cardinality less than κ . If c is regular, then it follows easily from Martin-Solovay [9] that MA is equivalent to the statement "for every ω_1 -saturated σ -ideal I in the Borels there is a c-I-Luzin set". In §2 we show that the regularity of c is necessary. This answers a question of Fremlin [5]. We also show that it is consistent with $\neg CH$ that for every such I there exists an ω_1 -I-Luzin set. These results can be thought of as a weak form of the following conjecture. Conjecture. It is consistent with $\neg CH$ that for every c.c.c partial order **P** of cardinality $\leq c$ there exist $\langle G_{\alpha} : \alpha < \omega_1 \rangle$ an ω_1 -sequence of **P**-filters such that for every dense $D \subseteq \mathbf{P}$ all but countably many G_{α} meet D. Note that this is a trivial consequence of CH. Next we give a result of Kunen that some restriction of the cardinality of **P** (e.g. $(2^{\omega_1})^+$) is necessary in our conjecture. We also show that for every c.c.c. **P** of cardinality $\leq \omega_2$ we can force (without adding reals) the existence of **P**-filters $\langle G_{\alpha}: \alpha < \omega_1 \rangle$ eventually meeting each dense subset of **P**.