SOME MAXIMUM PROPERTIES FOR A FAMILY OF SINGULAR HYPERBOLIC OPERATORS

Lu Zhu-JiA

$$
\begin{aligned}
& \text { We study some maximum properties of solutions of the equation } \\
& L_{p, q, c} u \equiv u_{x x}-h^{2}(x) u_{t t}+p h^{\prime}(x) u_{t}+q \frac{h^{\prime}(x)}{h(x)} u_{x}+c(x, t) u=0
\end{aligned}
$$

with real parameters p and q. Some of the results here improve those of L. E. Payne and D. Sather. We also point out that a certain condition given by S. Agmon, L. Nirenberg and M. H. Protter is not only sufficient in order to obtain a kind of maximum property, but also necessary for a special case of $L_{p, q, c}$.

1. Introduction. Since the maximum principles were first established for a class of linear second order hyperbolic operators in two independent variables [1], [3], many authors have studied various maximum and monotonicity properties of some problems for classes of linear second order hyperbolic operators in two or more independent variables [5]-[10]. Later Payne and Sather considered a singular hyperbolic operator [4]. They obtained some maximum, monotonicity and convexity properties, as well as pointwise bounds, for the solution of some Cauchy and initial-boundary value problems for the Chaplygin operator

$$
\begin{equation*}
L \equiv \frac{\partial^{2}}{\partial x^{2}}-h^{2}(x) \frac{\partial^{2}}{\partial t^{2}}, \tag{1.1}
\end{equation*}
$$

where h satisfies

$$
\begin{align*}
& \text { (a) } h \in C^{1}\left(R_{+}\right) \cap C^{0}\left(\bar{R}_{+}\right), \quad \text { (b) } h(0)=0, \tag{1.2}\\
& \text { (c) } h^{\prime}(x)>0, x>0 .
\end{align*}
$$

For example, Theorem 1 in [4] states that if h satisfies (1.2) and

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{h(x)}{h^{\prime}(x)}=0, \tag{1.3}
\end{equation*}
$$

and if u satisfies the conditions
(a) $u \in C^{2}(E \cup A B) \cap C^{1}(\bar{E})$,
(b) $u_{x} \leq 0$ on $A B$,
(c) $L u \leq 0$ in E,
then

$$
\begin{equation*}
u \leq \max _{A B} u \text { in } E, \tag{1.5}
\end{equation*}
$$

