THE GENERALIZED SCHWARZ LEMMA FOR THE BERGMAN METRIC

Masaaki Suzuki

The function-theoretic criterion for the Bergman metric to be dominated by the Kobayashi metric on the domain in C^n is given. For this, we use the distinguished family of plurisubharmonic functions and *P*-metric of N. Sibony.

1. Introduction. Let *D* be a hyperbolic domain in \mathbb{C}^n (cf. Kobayashi [7]). On *D* we can define some intrinsic metrics: the Carathéodory metric C_D , the Kobayashi metric K_D , and the Bergman metric B_D . It is known that $C_D \leq K_D$ and $C_D \leq B_D$. In this paper we investigate when the Bergman metric is dominated by the Kobayashi metric. Using N. Sibony's *P*-metric we give a function-theoretic criterion for the following condition (#) to hold:

(#) $B_D \leq cK_D$ on the tangent bundle of D, c > 0 constant.

Under (#) every holomorphic mapping $F: U \to D$ satisfies $F * B_D \le 2^{-1/2} c B_U$, where U is the unit disc in C with the Bergman metric B_U . This theorem is called the generalized Schwarz lemma for the Bergman metric. According to N. Sibony [10], we introduce the family of functions

$$S_p(D) = \{ u: D \to [0,1); u(p) = 0, C^2 \text{-class in a neighborhood} \\ \text{of } p \text{ and } \log u \text{ is plurisubharmonic in } D \}.$$

Taking a Bergman kernel $k(z, \overline{w})$ of a domain *D*, we construct a function ϕ_w for a fixed point *w* in *D* as follows;

$$\phi_w(z) = \phi_{w,\alpha}(z) = 1 - \left(\frac{|k(z,\overline{w})|^2}{k(z,\overline{z})k(w,\overline{w})}\right)^{\alpha} \equiv 1 - v^{\alpha},$$

where α is a positive constant chosen for *D*. It is clear that $0 \le \phi_w \le 1$ and $\phi_w(w) = 0$. Our main results are stated as follows.

(I) Let D be a Bergman domain. If there is a constant $\alpha > 0$ such that $\phi_w = \phi_{w,\alpha}$ belongs to $S_w(D)$ for each w in D, then $B_D \le \alpha^{-1/2} K_D$; hence B_D satisfies the generalized Schwarz lemma.