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RETICULATED SETS AND THE ISOMORPHISM
OF ANALYTIC POWERS

R. M. SHORTT

We study the properties of separable measurable spaces which are
“Borel-dense of order n.” Those Borel-dense of order 1 are precisely
those that embed as a subset of the unit interval with totally imperfect
complement, and the nth order version is an appropriate casting of this
idea into » dimensions. The concept enables one to sharpen some known
results concerning the isomorphism types of analytic spaces. A result of
Mauldin and Shortt (separately) may be stated thus:

(1) If X is a space Borel-dense of order 1 and is Borel-isomorphic
with X X X, then X is automatically a standard (absolute Borel) space.
(Mauldin assumed X to be analytic.)

We obtain the following enlargement:

(2) If X is a space Borel-dense of order n and X" is Borel-isomor-
phic with X™ (some m > n), then X is an analytic space.

The requirement of nth order density is not overly severe. Comple-
ments (in a standard space) of universally null sets are Borel-dense of
every finite order, for example; the same may be said for complements of
sets always of first category or, more generally, of sets with Marczewski’s
property (s°). Statement 2 might therefore be regarded as a criterion
whereby to judge which universally null sets (or sets always of first
category, or sets with property (s°)) are co-analytic. It should also be
mentioned, however, that the problem of finding a particular Borel-dense
non-Borel analytic space 4 for which 4> = 4> is open; it may be that
“analytic” in statement 2 can be strengthened to “standard”. The
relationship between Borel-density and the Blackwell property is also
noted.

Our method of proof revolves around a strengthening of a classical
theorem of Mazurkiewicz and Sierpinski [10] to the effect that if 4 is an
analytic subset of a product S; X S,, then the set of s in S| such that the
section A(s) is uncountable is analytic. A multi-dimensional version of
this theorem is proposition 1 infra, wherein “uncountable” is replaced
with “non-recticulate” in keeping with the dimensions of the sections. The
fact that the projection of an analytic set is again analytic is expanded
into this multi-dimensional setting in Proposition 2. Other classical results
of Lusin and Braun do not generalize, however, as is shown by an
example.
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