CLOPEN REALCOMPACTIFICATION OF A MAPPING

Takesi Isiwata

In this note, we give a necessary and sufficient condition on φ : $X \to Y$ for $v\varphi$ to be an open perfect mapping of vX onto vY and other related results.

Throughout this paper, by a space we mean a completely regular Hausdorff space and mappings are continuous and we assume familiarity with [1] whose notation and terminology will be used throughout. We denote by $\varphi: X \to Y$ a map of X onto Y, by $\beta X(\nu X)$ the Stone-Čech compactification (Hewitt realcompactification) of X and by $\beta \varphi$ ($\nu \varphi = (\beta \varphi)|\nu X$) the Stone extension (realcompactification) over $\beta X(\nu X)$ of φ .

Concerning clopenness of $v\varphi$ of a clopen map $\varphi: X \to Y$ the following results are known.

THEOREM A (Ishii [4]). If $\varphi: X \to Y$ is an open quasi-perfect map, then $v\varphi$ is an open perfect map of vX onto vY.

THEOREM B (Morita [8]). If $\varphi: X \to Y$ is a clopen map such that the boundary of each fiber is relatively pseudocompact, then $v\varphi$ is also a clopen map of vX onto vY.

In §2, concerning Theorem A we give a necessary and sufficient condition on φ for $v\varphi$ to be an open perfect map of vX onto vY without using the theory of hyper-spaces (Theorem 2.3 below) and a necessary and sufficient condition on φ for $v\varphi$ to be an open *RC*-preserving map of vXonto vY under some condition (Theorem 2.6 below).

We use the following notation and abbreviation: C(X) is the set of real-valued continuous functions defined on X, $C(X; \varphi) = \{ f \in C(X); f$ is φ -bounded $\}$, Bd A = the boundary of A, usc = upper semicontinuous, lsc = lower semicontinuous and $\omega(\omega_1)$ = the first infinite (uncountabel) ordinal, clopen = closed and open.

1. Definitions and Lemmas.

1.1. DEFINITION. Let $\varphi: X \to Y$. $f \in C(X)$ is said to be φ -bounded if $\sup\{|f(x)|; x \in \varphi^{-1}(y)\} < \infty$ for every $y \in Y$. Whenever f is φ -bounded,