DEGENERATE SECANT VARIETIES AND A PROBLEM ON MATRICES

NORMAN GOLDSTEIN

We show that if a developable ruled surface of a curve in complex projective space has a degenerate secant variety, then the surface already lies in a \mathbb{P}^4 . This result eliminates a redundancy in the list of Griffiths and Harris, of surfaces that have degenerate secant varieties.

1. Introduction. A d-dimensional variety $X \subset \mathbb{P}_{\mathbb{C}}^N$, $N \geq 2d + 1$, is said to have a degenerate secant variety, $\operatorname{Sec}(X)$, when $\operatorname{dim}(\operatorname{Sec}(X)) \leq 2d$. In [1, Results 5.37, 6.16–18], Griffiths and Harris prove the Proposition: Let $X \subset \mathbb{P}^N$ be a surface having a degenerate secant variety. Then either (i) $X \subset \mathbb{P}^4$, (ii) X is a cone, (iii) X is the Veronese surface, or (iv) X is developable.

It is easy to show that any of conditions (i), (ii) or (iii) implies that X has a degenerate secant variety. The main contribution of the present paper is the Proposition (3.5): If a developable surface, X, has a degenerate secant variety, then X is contained in a \mathbb{P}^4 .

Combining the above two results, we obtain

THEOREM (1.0). A surface $X \subseteq \mathbb{P}^N$ has a degenerate secant variety precisely when one of conditions (i), (ii) or (iii) above is satisfied.

It is interesting to note that a developable surface always has a degenerate tangent variety i.e.

$$\dim(\operatorname{Tan}(X)) \le 3 \qquad [1, \operatorname{Result} 5.37];$$

this also follows from our Lemma (3.3).

We will see in §3 that a variety $X^d \subset \mathbb{P}^N$ gives rise to a family of $(N-d) \times (d+1)$ matrices $\{A(x)\}$ where x belongs to some polydisc $U \subset \mathbb{C}^d$. Let | denote "determinant". Result (3.2.1) states that

$$\dim \operatorname{Sec}(X) \leq 2d$$

$$\Leftrightarrow \operatorname{rank}(A(x) - A(y)) \leq d \quad \forall x, y \in U$$

$$\Leftrightarrow |A^{I}(x) - A^{I}(y)| = 0 \quad \text{for all } (d+1) \text{-tuples of rows}$$

$$I = (i_0, i_1, \dots, i_d).$$