THE DIOPHANTINE EQUATION $a x+b y=c \operatorname{IN} Q(\sqrt{5})$ AND OTHER NUMBER FIELDS

David Rosen

Solving in rational integers the linear diophantine equation

$$
\begin{equation*}
a x+b y=c, \quad(a, b) \mid c, a, b, c, \in Z \tag{1}
\end{equation*}
$$

is very well known. Let $d=(a, b)$, and put $A=a / d, B=b / d, C=c / d$, then equation (1) becomes

$$
A x+B y+C, \quad(A, B)=1, A, B, C, \in Z .
$$

The purpose of this note is to discuss the solutions of this equation when $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ are integers in $Q(\sqrt{5})$ and the solutions are integers in $Q(\sqrt{5})$. What makes the discussion interesting is that an algorithm which mimics the continued fraction algorithm that solves the rational integer case can be implemented.

A brief summary of the continued fraction algorithm for the rational case is as follows: To solve (1^{\prime}): find the regular simple continued fraction for A / B; i.e.

$$
\frac{A}{B}=r_{0}+\frac{1}{r_{1}+} \begin{array}{ll}
& \\
& \\
& +\frac{1}{r_{n}}
\end{array}
$$

which we write as $A / B=\left(r_{0} ; r_{1}, \ldots, r_{n}\right)$. Since A / B is rational, the continued fraction is finite. The $(m+1)$ th convergent of a continued fraction is denoted by $P_{m} / Q_{m}=\left(r_{0} ; r_{1} \cdots r_{m}\right)$. If $A / B=P_{n} / Q_{n}$ then the penultimate convergent P_{n-1} / Q_{n-1} provides a solution to $A x+B y=1$ because of the well-known relation.

$$
\begin{equation*}
P_{n} Q_{n-1}-Q_{n} P_{n-1}=(-1)^{n+1} . \tag{2}
\end{equation*}
$$

It suffices therefore to take $x=(-1)^{n+1} Q_{n-1}, y=(-1)^{n} P_{n-1}$. To solve (1) we take $x=(-1)^{n+1} d C Q_{n-1}$ and $y=(-1)^{n+1} d C P_{n-1}$.

It is well known that the integers in $Q(\sqrt{5})$ have the form $s+t \lambda$, where $s, t \in Z$ and $\lambda=(1+\sqrt{5}) / 2$. (See Hardy and Wright [1] or Niven and Zuckerman [3] for a complete discussion of this algebraic number field.) The elements in $Q(\sqrt{5})$ are of course the quotients of integers in the

