CONTINUITY OF HOMOMORPHISMS OF BANACH G-MODULES

B. E. JOHNSON

We consider whether, given a locally compact abelian group G and two Banach G-modules X and Y, every G-module homomorphism from X into Y is continuous. Discontinuous homomorphisms can exist only when Y has submodules on which G acts by scalar multiplication. They are also associated with discontinuous convariant forms on X so if either of these are absent them all G-module homomorphisms are continuous.

1. Introduction. Throughout this paper G is a locally compact abelian group.

DEFINITION 1.1. A Banach G-module is a Banach space X with a map $(g, x) \mapsto gx$ of $G \times X$ into X such that

- (i) $x \mapsto gx$ is linear on $X(g \in G)$.
- (ii) $g(hx) = (gh)x \ (g, h \in G, x \in X).$
- (iii) ex = x ($x \in X$, e is the identity element of G).
- (iv) There is a $K \in \mathbf{R}$ with

$$||gx|| \le K||x|| \qquad (x \in X, g \in G).$$

Note that we do not require any continuity of the map $(g, x) \mapsto gx$ in g—in fact in most of the paper we will be treating G as a discrete group.

A G-submodule of X is a closed linear subspace X_0 of X with $gx \in X_0$ $(g \in G, x \in X_0)$. The G-module X is scalar if for each $g \in G$ there is $\lambda(g) \in \mathbb{C}$ with $gx = \lambda(g)x$ $(g \in G, x \in X)$. If $X \neq \{0\}$ then $\lambda(e) = 1$, $\lambda(gh) = \lambda(g)\lambda(h)$ and $|\lambda(g)| \leq K$. Applying this last inequality to g^n $(n \in \mathbb{Z})$ we see $|\lambda(g)| = 1$ so λ is a character and mild continuity hypotheses on $g \mapsto gx$ would imply that λ is continuous.

DEFINITION 1.2. Let X, Y be Banach G-modules. Then S: $X \to Y$ is a G-module homomorphism if it is linear and S(gx) = gS(x) ($g \in G$, $x \in X$).

If Y is a scalar module then $S(gx) = \lambda(g) S(x)$ and we say that S is λ -covariant. In the special case when $\lambda \equiv 1$ is the trivial character we say S is invariant. When $Y = \mathbb{C}$ we call S a form.

Invariant and covariant forms are related in many cases because if S is a λ covariant form on X and T: $X \to X$ is a linear map with