WEIGHTS AND L log L

A. CARBERY, S.-Y. A. CHANG AND J. GARNETT

In memory of Irving L. Glicksberg April 1, 1925–November 30, 1983

Let $\omega(x)$ be a positive locally integrable weight on [0,1]. Discussed are conditions on ω necessary and sufficient for the (dyadic) Hardy-Littlewood maximal function to map $L \log L(w dx)$ into $L^1(\omega dx)$ or into weak L^1 .

1. Introduction. Let Mf denote the (dyadic) Hardy-Littlewood maximal function of f, for f locally integrable on \mathbb{R}^n . That is,

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f|,$$

the sup being taken over all dyadic cubes in \mathbb{R}^n containing x. It is well-known that M is a bounded operator from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ when p > 1, takes L^1 to weak L^1 , and for functions f supported in a dyadic cube Q_0 satisfies

$$\int_{Q_0} Mf \le C \int_{Q_0} |f| \log^+ |f| + C |Q_0|.$$

More recently, Muckenhoupt and others have studied the behaviour of M when the L^p spaces with respect to Lebesgue measure are replaced by those with respect to the measure $\omega(x) dx$, $\omega \in L^1_{loc}$. A nonnegative locally integrable function ω is said to be in Muckenhoupt's (dyadic) A_p class for $1 \le p < \infty$ if

(1.1)
$$\sup_{Q \text{ dyadic}} \left\| \frac{\omega_Q}{\omega(x)} \right\|_{L^q(\omega \, dx/\omega(Q))} = A_p(\omega) = A_p < \infty.$$

Here 1/p + 1/q = 1, ω_Q is the average $(1/|Q|) \int_Q \omega$ of ω over Q and $\omega(Q) = \int_Q \omega$. (More generally, if E is a measurable set in \mathbb{R}^n we denote $\int_E \omega$ by $\omega(E)$.) In [3], Muckenhoupt proved that given $\omega \in L^1_{loc}$ there exists a constant $C = C_{p,\omega,n}$ such that

(1.2)
$$\int |Mf|^{p} \omega \leq C \int |f|^{p} \omega$$

if and only if ω is in the A_p class, and that $\omega \{Mf > \lambda\} \le (C/\lambda) \int |f| \omega$ if and only if ω is in the A_1 class. It would therefore seem reasonable to