ON THE BOUNDARY CONTINUITY OF CONFORMAL MAPS

CH. POMMERENKE

Let the function f map the unit disk D conformally onto the domain G in $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$. The prime end theory of Carathéodory gives a completely geometric characterization of the boundary behavior of f. Prime ends are defined in terms of crosscuts of G.

Our aim is to give a geometric description of the boundary behavior of f that refers only to the boundary ∂G and not to the domain itself. It can therefore be applied to any complementary domain of a connected closed set in \hat{C} . Our description will however be incomplete because we will have to allow exceptional sets.

1. Introduction and results. We say that f has the angular limit $f(\zeta)$ at $\zeta \in \partial \mathbf{D}$ if

$$f(\zeta) = \lim_{z \to \zeta, z \in \Delta} f(z) \in \hat{\mathbf{C}}$$

exists for every Stolz angle Δ at ζ ; we shall always denote by $f(\zeta)$ the angular limit if it exists. A theorem of Beurling [1] (see e.g. [4, p. 56] [8, p. 341, 344]) states that the angular limit $f(\zeta)$ exists for $\zeta \in B$ where $\operatorname{cap}(\partial \mathbf{D} \setminus B) = 0$ and furthermore that

$$\operatorname{cap}\{\zeta \in B: f(\zeta) = \omega\} = 0 \quad \text{for } \omega \in \widehat{\mathbf{C}};$$

here cap denotes the logarithmic capacity.

We shall say that f is continuous at $\zeta \in \partial \mathbf{D}$ if f has a continuous extension to $\mathbf{D} \cup \{\zeta\}$, that is, if $f(z) \to f(\zeta)$ as $z \to \zeta$, $z \in \mathbf{D}$. Our first result states that discontinuity tends to imply injectivity.

THEOREM 1. Let f map **D** conformally onto G. Then there is a partition

$$\partial \mathbf{D} = A_0 \cup A_1 \cup A_2$$

such that

- (i) $\operatorname{cap} A_0 = 0$,
- (ii) the angular limit $f(\zeta)$ exists for every $\zeta \in A_1$, and f is one-to-one on A_1 ,
- (iii) f is continuous at each $\zeta \in A_2$, and f is exactly two-to-one on A_2 .