THE SPECTRUM OF AN INTERPOLATED OPERATOR AND ANALYTIC MULTIVALUED FUNCTIONS

T. J. RANSFORD

Let $[B_0, B_1]$ be a complex interpolation pair and $T: B_0 + B_1 \rightarrow B_0 + B_1$ be a linear map whose restriction to each interpolation space $[B_0, B_1]_s$ is a bounded operator on that space with spectrum Sp_sT . Under mild conditions on T it is shown that the set-valued map $\lambda \rightarrow Sp_{(Re\lambda)}T$ is an analytic multivalued function. This fact is used to unify and generalise a number of previously known results about the spectrum of an interpolated operator, and also to motivate some new ones.

Introduction. Let $[B_0, B_1]$ be a complex interpolation pair and $B_s = [B_0, B_1]_s$ ($0 \le s \le 1$) be the corresponding interpolation spaces. If T: $B_0 + B_1 \rightarrow B_0 + B_1$ is a linear map whose restriction to each B_s is a bounded operator on B_s , then its spectrum $\operatorname{Sp}_s T$ in $L(B_s)$ can vary with s. This phenomenon has been investigated in a wide variety of special cases. Examples include: certain sorts of matrices on l_p -spaces [15, 16, 27, 47], Cesaro-type operators on L_p -spaces [10, 26, 35], multipliers on the L_p -spaces of a locally compact Abelian group [28, 36, 50, 51, 52], and certain singular integral operators on L_p -spaces [29], and even H_p -spaces [14]. The main theoretical results have been of three kinds: conditions ensuring that $\operatorname{Sp}_s T$ is independent of s [17, 21, 22, 36, 48], establishment of bounds for $\operatorname{Sp}_s T$ in terms of $\operatorname{Sp}_0 T$ and $\operatorname{Sp}_1 T$ [46, 48], and investigation of the continuity properties of the set-valued map $s \rightarrow \operatorname{Sp}_s T$ [43, 44, 45, 52].

This last is the starting point for the present paper. Although the upper semicontinuity of $s \rightarrow \text{Sp}_s T$ for $s \in (0, 1)$ is a purely topological statement, its proof in [44] depends upon properties of analytic functions. This state of affairs seems somewhat unsatisfactory: surely from such a proof it should be possible to draw *analytic* conclusions. We do just that, using the recently developed tools from the theory of analytic multivalued functions. This theory was first applied by Z. Słodkowski in [38] to describe the spectrum of an analytically varying operator on a Banach space; by contrast we keep the operator fixed and allow the space to vary. One of our two main results (2.7) asserts that the map $\lambda \rightarrow \text{Sp}_{(\text{Re}\lambda)}T$ is an analytic multivalued function on $\{\lambda; 0 < \text{Re} \lambda < 1\}$. Unfortunately, technical problems force us to impose a mild condition on T for the proof to