VECTOR BUNDLES OVER (8k + 3)-DIMENSIONAL MANIFOLDS

TZE BENG NG

Let M be a closed, connected, smooth and 3-connected $\operatorname{mod} 2$ (i.e. $H_i(M; \mathbf{Z}_2) = 0$, $0 < i \le 3$) manifold of dimension 3 + 8k with k > 1. We obtain some necessary and sufficient condition for the span of a (3 + 8k)-plane bundle η over M to be greater than or equal to 7 or 8. We obtain, for M 4-connected $\operatorname{mod} 2$ and satisfying $\operatorname{Sq}^2\operatorname{Sq}^1H^{n-8}(M) = \operatorname{Sq}^2H^{n-7}(M)$, where $n = \dim M \equiv 11 \mod 16$ with n > 11, that span $M \ge 8$ if and only if $\chi_2(M) = 0$. Some applications to product manifolds and immersion are given.

1. Introduction. Let M be a closed, connected and smooth manifold whose dimension n is congruent to 3 mod 8 with $n \ge 11$. Let η be an n-plane bundle over M. Recall span(η) is defined to be the maximal number of linearly independent cross sections of η . When η is the tangent bundle of M we simply write span(M) for span(η). Recall that the Kervaire mod 2 semi-characteristic of M $\chi_2(M)$, is defined by

$$\chi_2(M) = \sum_{2i < n} \dim_{\mathbf{Z}_2} H^i(M; \mathbf{Z}_2) \bmod 2.$$

Suppose M is a 1-connected mod 2 spin manifold. Then according to Thomas [14] and Randall [11], $\operatorname{span}(M) \ge 4$ if and only if $\chi_2(M) = 0$ and $w_{n-3}(M) = 0$, where $w_j(M)$ is the jth-mod 2 Stiefel-Whitney class of the tangent bundle of M. In this paper we shall derive some necessary and sufficient condition for $\operatorname{span}(M) \ge 7$ or 8 when M is 3-connected mod 2.

For the rest of the paper we shall assume that M is 3-connected mod 2. Then from [14] and the methods of Mahowald [4] we have:

THEOREM 1.1 (Thomas-Mahowald). Span $(M) \ge 5$ if and only if $\delta w_{n-5}(M) = 0$ and $\chi_2(M) = 0$. Here δ is the Bockstein coboundary homomorphism associated with the exact sequence $0 \to \mathbb{Z} \to \mathbb{Z}_2 \to 0$.

We shall consider the modified Postnikov tower for the fibration $B\operatorname{spin}_{n-k} \to B\operatorname{spin}_n$ for $n \ge 19$ and k = 7 or 8 where $B\operatorname{spin}_j$ is the classifying space of spin j-plane bundles. Then for an n-plane bundle η over M, η is classified by a map g from M into $B\operatorname{spin}_n$. Then η admits k-linearly independent cross-sections if and only if g lifts to $B\operatorname{spin}_{n-k}$.