THE BOUNDARY REGULARITY OF THE SOLUTION OF THE **∂**-EQUATION IN THE PRODUCT OF STRICTLY PSEUDOCONVEX DOMAINS

PIOTR JAKÓBCZAK

Let *D* be a strictly pseudoconvex domain in \mathbb{C}^n . We prove that for every $\overline{\partial}$ -closed differential (0, q)-form $f, q \ge 1$, with coefficients of class $\mathscr{C}^{\infty}(D \times D)$, and continuous in the set $\overline{D} \times \overline{D} \setminus \Delta(D)$, the equation $\overline{\partial}u = f$ admits a solution *u* with the same boundary regularity properties. As an application, we prove that certain ideals of analytic functions in strictly pseudoconvex domains are finitely generated.

1. Introduction. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with \mathscr{C}^2 boundary. It is known ([2], Theorem 2) that given a (0, q)-form f in D with coefficients of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\overline{D} \times \overline{D}$, such that $\overline{\partial} f = 0$, $q = 1, \ldots, 2n$, there exists a (0, q - 1)-form u in $D \times D$ such that the coefficients of u are also of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\overline{D} \times \overline{D}$, and such that $\overline{\partial} u = f$.

In this paper, using the results from [2], and the method of [6], we prove the following theorem:

THEOREM 1. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with \mathscr{C}^2 boundary. Set $Q = (\overline{D} \times \overline{D}) \setminus \{(z, z) | z \in \partial D\}$. Suppose that f is a (0, q) $\overline{\partial}$ -closed differential form with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap \mathscr{C}(Q)$. Then there exists a (0, q - 1)-form u with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap \mathscr{C}(Q)$, $\mathscr{C}(Q)$, such that $\overline{\partial}u = f$.

As an application, we prove a following theorem on the existence of the decomposition operators in some spaces of holomorphic functions in the product domain $D \times D$: Let D and Q be as above. Denote by $A_Q(D \times D)$ the space of all functions holomorphic in $D \times D$, which are continuous in Q. Let $(A_Q)_0(D \times D)$ be the subspace of $A_Q(D \times D)$, consisting of all functions which vanish on $\Delta(D)$, the diagonal in $D \times D$.

THEOREM 2. Let $g_1, \ldots, g_N \in (A_Q)_0(D \times D)$ satisfy the following properties: (i) $\{(z, s) \in Q | g_1(z, s) = \cdots = g_N(z, s) = 0\} = \Delta(D)$; (ii) for every $z \in D$, the germs at (z, z) of the functions g_i , $i = 1, \ldots, N$, generate