THE BOUNDARY REGULARITY OF THE SOLUTION OF THE $\bar{\partial}$-EQUATION IN THE PRODUCT OF STRICTLY PSEUDOCONVEX DOMAINS

Piotr Jakóbczak

Abstract

Let D be a strictly pseudoconvex domain in \mathbf{C}^{n}. We prove that for every $\bar{\partial}$-closed differential $(0, q)$-form $f, q \geqq 1$, with coefficients of class $\mathscr{C}^{\infty}(D \times D)$, and continuous in the set $\bar{D} \times \bar{D} \backslash \Delta(D)$, the equation $\bar{\partial} u=f$ admits a solution u with the same boundary regularity properties. As an application, we prove that certain ideals of analytic functions in strictly pseudoconvex domains are finitely generated.

1. Introduction. Let D be a bounded strictly pseudoconvex domain in \mathbf{C}^{n} with \mathscr{C}^{2} boundary. It is known ([2], Theorem 2) that given a $(0, q)$-form f in D with coefficients of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\bar{D} \times \bar{D}$, such that $\bar{\partial} f=0, q=1, \ldots, 2 n$, there exists a $(0, q-1)$-form u in $D \times D$ such that the coefficients of u are also of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\bar{D} \times \bar{D}$, and such that $\bar{\partial} u=f$.

In this paper, using the results from [2], and the method of [6], we prove the following theorem:

Theorem 1. Let D be a bounded strictly pseudoconvex domain in \mathbf{C}^{n} with \mathscr{C}^{2} boundary. Set $Q=(\bar{D} \times \bar{D}) \backslash\{(z, z) \mid z \in \partial D\}$. Suppose that f is $a(0, q) \bar{\partial}$-closed differential form with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap \mathscr{C}(Q)$. Then there exists a $(0, q-1)$-form u with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap$ $\mathscr{C}(Q)$, such that $\bar{\partial} u=f$.

As an application, we prove a following theorem on the existence of the decomposition operators in some spaces of holomorphic functions in the product domain $D \times D$: Let D and Q be as above. Denote by $A_{Q}(D \times D)$ the space of all functions holomorphic in $D \times D$, which are continuous in Q. Let $\left(A_{Q}\right)_{0}(D \times D)$ be the subspace of $A_{Q}(D \times D)$, consisting of all functions which vanish on $\Delta(D)$, the diagonal in $D \times D$.

Theorem 2. Let $g_{1}, \ldots, g_{N} \in\left(A_{Q}\right)_{0}(D \times D)$ satisfy the following properties: (i) $\left\{(z, s) \in Q \mid g_{1}(z, s)=\cdots=g_{N}(z, s)=0\right\}=\Delta(D)$; (ii) for every $z \in D$, the germs at (z, z) of the functions $g_{i}, i=1, \ldots, N$, generate

