NEAR ISOMETRIES OF BOCHNER L^1 AND L^∞ SPACES

MICHAEL CAMBERN

Let $(\Omega_i, \Sigma_i, \mu_i)$ be σ -finite measure spaces, i=1,2, and let E be a Hilbert space. If the Bochner spaces $L^p(\Omega_1, \Sigma_1, \mu_1, E)$ and $L^p(\Omega_2, \Sigma_2, \mu_2, E)$ are nearly isometric, for either p=1 or $p=\infty$, then $L^1(\Omega_1, \Sigma_1, \mu_1, E)$ is isometric to $L^1(\Omega_2, \Sigma_2, \mu_2, E)$ and hence $L^\infty(\Omega_1, \Sigma_1, \mu_1, E)$ is isometric to $L^\infty(\Omega_2, \Sigma_2, \mu_2, E)$.

Throughout this paper the letter E will denote a Banach space which will often be taken to be Hilbert space. Interaction between elements of a Banach space and those of its dual will be denoted by $\langle \cdot, \cdot \rangle$. We will write $E_1 \cong E_2$ to indicate that the Banach spaces E_1 and E_2 are isometric.

Following Banach, [2, p. 242], we will call the Banach spaces E_1 and E_2 nearly isometric if $1 = \inf\{\|T\| \|T^{-1}\|\}$, where T runs through all isomorphisms of E_1 onto E_2 . It is of course equivalent to suppose that $1 = \inf\{\|T\|\}$, where $\|T^{-1}\| = 1$, and hence T is a norm-increasing isomorphism of E_1 onto E_2 . For if T is any continuous isomorphism of one Banach space onto another, we obtain an isomorphism \hat{T} having the desired properties by defining \hat{T} to be equal to $\|T^{-1}\|T$.

If (Ω, Σ, μ) is a positive measure space and E a Banach space, the Bochner spaces $L^p(\Omega, \Sigma, \mu, E)$ will be denoted by $L^p(\mu, E)$ when there is no danger of confusing the underlying measurable spaces involved, and by $L^p(\mu)$ when E is the scalar field. For the definitions and properties of these spaces we refer to [8].

It has been noted by Benyamini [4] that, as a consequence of known properties of spaces of continuous functions, if two spaces $L^p(\mu_1)$ and $L^p(\mu_2)$ are nearly isometric, for either p=1 or $p=\infty$, then they are isometric. What we wish to show is that the same conclusion can be drawn for near isometries of certain Bochner spaces. We will prove the following:

Theorem. Let $(\Omega_i, \Sigma_i, \mu_i)$ be σ -finite measure spaces, i=1, 2, and E a Hilbert space. If there exists an isomorphism T, with $||T^{-1}||=1$ and $||T||<3/(2\sqrt{2})$, mapping $L^p(\Omega_1, \Sigma_1, \mu_1, E)$ onto $L^p(\Omega_2, \Sigma_2, \mu_2, E)$ for either p=1 or $p=\infty$, then $L^1(\Omega_1, \Sigma_1, \mu_1, E)\cong L^1(\Omega_2, \Sigma_2, \mu_2, E)$ and $L^\infty(\Omega_1, \Sigma_1, \mu_1, E)\cong L^\infty(\Omega_2, \Sigma_2, \mu_2, E)$.