CROSSED PRODUCT AND HEREDITARY ORDERS

GERALD H. CLIFF AND ALFRED R. WEISS

Let Λ be the crossed product order $(O_L/O_K, G, \rho)$ where L/K is a **finite Galois extension of local fields with Galois group** G , and ρ is a **factor set with values in** O_L^* **. Let** $\Lambda_0 = \Lambda$ **, and let** Λ_{i+1} **be the left order** $O_r(\text{rad }\Lambda_i)$ of rad Λ_i . The chain of orders $\Lambda_0, \Lambda_1, \ldots, \Lambda_s$ ends with a hereditary order Λ_s . We prove that Λ_s is the unique minimal hereditary **order in** $A = K\Lambda$ containing Λ , that Λ_s has e/m simple modules, each **of dimension** *f* over the residue class field \overline{K} of O_K , and that $s = d$ – $(e - 1)$. Here d, e, f are the different exponent, ramification index, **and inertial degree of** *L/K,* **and** *m* **is the Schur index of** *A***.**

1. Introduction. Let O_K be a complete discrete valuation ring having field of fractions K and finite residue class field \overline{K} . Let L be a finite Galois extension of *K,* with Galois group G, and let *O^L* be the valuation ring in L. Let ρ be a factor set on $G \times G$ with values in the units of O_L . We are interested in the crossed product order $\Lambda = (O_L/O_K, G, \rho)$ con tained in the simple algebra $A = (L/K, G, \rho)$. If ρ is trivial, Auslander-Goldman [1] showed that Λ is a maximal order in A if and only if L/K is unramified, and Auslander-Rim [2] showed that Λ is hereditary if and only if L/K is tamely ramified. Williamson [8] extended the Auslander-Rim result to the case that ρ is any factor set. We are interested in the wild case. Benz-Zassenhaus [3] showed that Λ is contained in a unique minimal hereditary order in *A.*

We set $\Lambda_0 = \Lambda$, and define inductively

$$
\Lambda_{j+1} = \left\{ x \in A : x \operatorname{rad} \Lambda_j \subseteq \operatorname{rad} \Lambda_j \right\} = O_j(\operatorname{rad} \Lambda_j).
$$

Then we have the sequence of orders

$$
\Lambda_0 \subsetneq \Lambda_1 \subsetneq \Lambda_2 \subsetneq \cdots \subsetneq \Lambda_s = \Lambda_{s+1}
$$

for some integer *s*. Since $\Lambda_s = O_l(\text{rad }\Lambda_s)$, it follows that Λ_s is hereditary ([6, 39.11, 39.14]). From the theory of hereditary orders (see [6, 39.14]) Λ_s may be described as follows: if $A \cong M_n(D)$, the ring of $n \times n$ matrices over a division ring D, and if Δ is the unique maximal order in D, then *As* is the set of block matrices, with entries in Δ, where there are *r* diagonal blocks of size $n_i \times n_i$, and blocks above the diagonal have