CONTINUA OF CONSTANT DISTANCES IN SPAN THEORY

A. Lelek

It is proved that, for each non-negative number β not exceeding the span of a mapping $f: X \to Y$, where X and Y are compact metric spaces, there exists a non-empty continuum $K_{\beta} \subset X \times X$ with identical two projections and such that the distances between f(x) and f(x') are all equal to β for $(x, x') \in K_{\beta}$. Similar results hold for other types of spans.

1. **Preliminaries.** All spaces are assumed to be non-empty metric spaces, and all mappings to be continuous functions. Let $f: X \to Y$ be a mapping. If X is connected, the *surjective span* $\sigma^*(f)$ of f is defined to be the least upper bound of the set of real numbers α with the following property: there exist non-empty connected sets $C_{\alpha} \subset X \times X$ such that dist $[f(x), f(x')] \ge \alpha$ for $(x, x') \in C_{\alpha}$, and

$$(\sigma^*) \qquad \qquad p_1(C_{\alpha}) = p_2(C_{\alpha}) = X,$$

where p_1 and p_2 denote the standard projections of the product, that is, $p_1(x, x') = x$ and $p_2(x, x') = x'$. The span $\sigma(f)$, the semispan $\sigma_0(f)$, both for mappings f with the domains X not necessarily connected, and the surjective semispan $\sigma_0^*(f)$ in the case of connected domains, are defined similarly with condition (σ^*) relaxed to conditions

$$(\sigma) \qquad \qquad p_1(C_{\alpha}) = p_2(C_{\alpha}),$$

$$(\sigma_0) \qquad \qquad p_1(C_a) \supset p_2(C_a),$$

$$\begin{pmatrix} \sigma_0^* \end{pmatrix} \qquad \qquad p_1(C_\alpha) = X,$$

respectively. The following inequalities and formulae are direct consequences of the definitions:

(1)
$$0 \le \sigma^*(f) \le \sigma(f) \le \sigma_0(f) \le \operatorname{diam} Y,$$

(2)
$$0 \le \sigma^*(f) \le \sigma_0^*(f) \le \sigma_0(f) \le \operatorname{diam} Y,$$

(3)
$$\sigma(f) = \sup\{\sigma^*(f|A): A \subset X, A \neq \emptyset \text{ connected}\},\$$

(4)
$$\sigma_0(f) = \sup \{ \sigma_0^*(f | A) \colon A \subset X, A \neq \emptyset \text{ connected} \}.$$

For $\tau = \sigma$, σ^* , σ_0 , σ_0^* , the corresponding spans $\tau(X)$ of a space X are the spans $\tau(id_X)$ of the identity mapping on X. The span $\sigma(f)$ of a