THE SPACING OF THE MINIMA IN CERTAIN CUBIC LATTICES

H. C. WILLIAMS

Let \mathscr{K} be a cubic field with negative discriminant; let $\mu, \nu \in \mathscr{K}$; and let \mathscr{R} be a lattice with basis $\{1, \mu, \nu\}$ such that 1 is a minimum of \mathscr{R} . If

$$1 = \theta_1, \theta_2, \theta_3, \ldots, \theta_n, \ldots$$

is a chain of adjacent minima of \mathscr{R} with $\theta_{i+1} > \theta_i$ (i = 1, 2, 3, ...), then

 $\theta_{n+5} \geq \theta_{n+3} + \theta_n$.

This result can be used to prove that if p is the period of Voronoi's continued fraction algorithm for finding the fundamental unit ε_0 of \mathscr{K} , then

 $\varepsilon_0 > \tau^{p/2}$, where $\tau = (1 + \sqrt{5})/2$. It is also shown that $\theta_n > 4^{[(n-1)/7]}$.

1. Introduction. In order to discuss the problems considered in this paper, it is necessary to give a brief description of the properties of cubic lattices. For a more extensive and more general treatment of these topics we refer the reader to Delone and Faddeev [1].

Let $f(x) \in \mathbb{Z}[x]$ be a cubic polynomial, irreducible over the rationals \mathscr{Q} and having a negative discriminant. Let δ be the real zero of f(x) and denote by $\mathscr{K} = \mathscr{Q}(\delta)$ the complex cubic field formed by adjoining δ to \mathscr{Q} . If \mathscr{E}_3 denotes Euclidean 3-space, we can associate with each $\alpha \in \mathscr{K}$ a point $A \in \mathscr{E}_3$, where

$$A = (\alpha, (\alpha' - \alpha'')/2i, (\alpha' + \alpha'')/2),$$

 $i^2 + 1 = 0$, and α', α'' are the conjugates of α . Since f(x) has a negative discriminant, all three components of A must be real. If $\lambda, \mu, \nu \in \mathcal{K}$ and λ, μ, ν are rationally independent, we define the cubic lattice \mathcal{L} by

$$\mathscr{L}=\big\{u\Lambda+vM+wN|(u,v,w)\in\mathbf{Z}^3\big\}.$$

We say that \mathscr{L} has a basis $\{\lambda, \mu, \nu\}$ and denote \mathscr{L} by $\langle \lambda, \mu, \nu \rangle$. For the sake of convenience we will often use the expression $\alpha \in \mathscr{L}$ to denote that it is the corresponding point $A \in \mathscr{E}_3$ that is actually in \mathscr{L} . Also, if $\mathscr{L} = \langle \lambda, \mu, \nu \rangle$, we define $\alpha \mathscr{L}$ ($\alpha \in \mathscr{K}$) to be the lattice $\langle \alpha \lambda, \alpha \mu, \alpha \nu \rangle$.