## CONSTRUCTIONS OF TWO-FOLD BRANCHED COVERING SPACES

## JOSÉ M. MONTESINOS AND WILBUR WHITTEN

To Deane Montgomery

By equivariantly pasting together exteriors of links in  $S^3$  that are invariant under several different involutions of  $S^3$ , we construct closed orientable 3-manifolds that are two-fold branched covering spaces of  $S^3$  in distinct ways, that is, with different branch sets. Sufficient conditions are given to guarantee when the constructed manifold M admits an induced involution, h, and when  $M/h \cong S^3$ . Using the theory of characteristic submanifolds for Haken manifolds with incompressible boundary components, we also prove that doubles,  $D(K, \rho)$ , of prime knots that are not strongly invertible are characterized by their two-fold branched covering spaces, when  $\rho \neq 0$ . If, however, K is strongly invertible, then the manifold branch covers distinct knots. Finally, the authors characterize the type of a prime knot by the double covers of the doubled knots,  $D(K; \rho, \eta)$  and  $D(K^*; \rho, \eta)$ , of K and its mirror image  $K^*$  when  $\rho$  and  $\eta$  are fixed, with  $\rho \neq 0$  and  $\eta \in \{-2,2\}$ .

With each two-fold branched covering map,  $p: M^3 \to N^3$ , there is associated a PL involution,  $h: M \to M$ , that induces p. There can, however, be other PL involutions on M that are not equivalent to h, but nevertheless are covering involutions for two-fold branched covering maps of M (cf. [BGM]). Our purpose, in this paper, is to introduce ways of detecting such involutions and controlling their number. We begin with compact 3-manifolds with several obvious PL involutions.

An oriented link  $\tilde{L}$  in M is 2-symmetric, if  $N^3 \cong S^3$  and if  $h(\tilde{L}) = \tilde{L}$ . In §1, we give examples of knots and links in  $S^3$  that are 2-symmetric in two or more ways; for example, a trefoil knot is both strongly invertible and periodic (definitions in §1). In §2, we paste the exteriors,  $E(\tilde{L})$  and  $E(\tilde{L}')$ , of 2-symmetric links,  $\tilde{L}$  and  $\tilde{L}'$ , together along a torus-boundary component of each exterior; Proposition 2.1 gives the pasting instructions f that must be followed in order for the involutions, h and h', of  $E(\tilde{L})$  and  $E(\tilde{L}')$  to extend to an involution  $h_f$  of  $E(\tilde{L}) \cup_f E(\tilde{L}')$ . Theorems 2.2 and 2.3 allow us to conclude, under fairly relaxed conditions, that the orbit space of  $h_f$  is  $S^3$ .