THE ASYMPTOTIC BEHAVIOR OF A FAMILY OF SEQUENCES

P. Erdös, A. Hildebrand, A. Odlyzko, P. Pudaite and B. Reznick

Abstract

A class of sequences defined by nonlinear recurrences involving the greatest integer function is studied, a typical member of the class being $$
a(0)=1, \quad a(n)=a(\lfloor n / 2\rfloor)+a(\lfloor n / 3\rfloor)+a(\lfloor n / 6\rfloor) \quad \text { for } n \geq 1
$$

For this sequence, it is shown that $\lim a(n) / n$ as $n \rightarrow \infty$ exists and equals $12 /(\log 432)$. More generally, for any sequence defined by

$$
a(0)=1, \quad a(n)=\sum_{i=1}^{s} r_{i} a\left(\left\lfloor n / m_{l}\right\rfloor\right) \quad \text { for } n \geq 1
$$

where the $r_{t}>0$ and the m_{i} are integers ≥ 2, the asymptotic behavior of $a(n)$ is determined.

1. Introduction. Rawsthorne [R] recently asked whether the limit $a(n) / n$ exists for the sequence $a(n)$ defined by

$$
\begin{equation*}
a(0)=1, \quad a(n)=a(\lfloor n / 2\rfloor)+a(\lfloor n / 3\rfloor)+a(\lfloor n / 6\rfloor), \quad n \geq 1, \tag{1.1}
\end{equation*}
$$

where $\lfloor x\rfloor$ denotes the greatest integer $\leq x$. If the limit exists, Rawsthorne also asked for its value. We have answered these questions [EHOPR]: the limit exists and equals $12 / \log 432$, where, as in the rest of the paper, \log denotes the natural logarithm. Our method leads to a more general result about such recursively defined sequences.

Let $a(n)$ be the sequence defined by

$$
\begin{equation*}
a(0)=1, \quad a(n)=\sum_{i=1}^{s} r_{i} a\left(\left|n / m_{i}\right|\right), \quad n \geq 1, \tag{1.2}
\end{equation*}
$$

where $r_{i}>0$ and the m_{i} 's are integers ≥ 2. Let τ be the (unique) solution to

$$
\begin{equation*}
\sum_{i=1}^{s} \frac{r_{i}}{m_{i}^{\tau}}=1 . \tag{1.3}
\end{equation*}
$$

We distinguish two cases: if there is an integer d and integers u_{i} such that $m_{i}=d^{u_{i}}$, we are in the lattice case, otherwise we are in the ordinary case. In the ordinary case, $\lim a(n) / n^{\tau}$ exists; in the lattice case, $\lim a(n) / n^{\tau}$ does not exist, but $\lim _{k \rightarrow \infty} a\left(d^{k}\right) / d^{k \tau}$ exists. The limit in either case is

