THE ASYMPTOTIC BEHAVIOR OF A FAMILY OF SEQUENCES

P. Erdős, A. Hildebrand, A. Odlyzko, P. Pudaite and B. Reznick

A class of sequences defined by nonlinear recurrences involving the greatest integer function is studied, a typical member of the class being

$$a(0) = 1$$
, $a(n) = a(\lfloor n/2 \rfloor) + a(\lfloor n/3 \rfloor) + a(\lfloor n/6 \rfloor)$ for $n \ge 1$.

For this sequence, it is shown that $\lim a(n)/n$ as $n \to \infty$ exists and equals 12/(log 432). More generally, for any sequence defined by

$$a(0) = 1,$$
 $a(n) = \sum_{i=1}^{s} r_i a(\lfloor n/m_i \rfloor)$ for $n \ge 1$,

where the $r_i > 0$ and the m_i are integers ≥ 2 , the asymptotic behavior of a(n) is determined.

1. Introduction. Rawsthorne [R] recently asked whether the limit a(n)/n exists for the sequence a(n) defined by

$$(1.1) \quad a(0) = 1, \qquad a(n) = a(|n/2|) + a(|n/3|) + a(|n/6|), \quad n \ge 1.$$

where $\lfloor x \rfloor$ denotes the greatest integer $\leq x$. If the limit exists, Rawsthorne also asked for its value. We have answered these questions [EHOPR]: the limit exists and equals $12/\log 432$, where, as in the rest of the paper, log denotes the natural logarithm. Our method leads to a more general result about such recursively defined sequences.

Let a(n) be the sequence defined by

(1.2)
$$a(0) = 1, a(n) = \sum_{i=1}^{s} r_i a(\lfloor n/m_i \rfloor), n \ge 1,$$

where $r_i > 0$ and the m_i 's are integers ≥ 2 . Let τ be the (unique) solution to

(1.3)
$$\sum_{i=1}^{s} \frac{r_i}{m_i^{\tau}} = 1.$$

We distinguish two cases: if there is an integer d and integers u_i such that $m_i = d^{u_i}$, we are in the *lattice* case, otherwise we are in the *ordinary* case. In the ordinary case, $\lim a(n)/n^{\tau}$ exists; in the lattice case, $\lim a(n)/n^{\tau}$ does not exist, but $\lim_{k\to\infty} a(d^k)/d^{k\tau}$ exists. The limit in either case is