BOUNDARY BEHAVIOR OF HOLOMORPHIC FUNCTIONS IN THE BALL

JACOB BURBEA

A description of the boundary behavior of functions belonging to certain Sobolev classes of holomorphic functions on the unit ball B_n of C^n is given in terms of bounded and vanishing mean oscillation. In particular, it is shown that the boundary values of any holomorphic function on B_n , whose fractional derivative of order n/p belongs to the Hardy class $H^p(B_n)$, have vanishing mean oscillation provided 0 .

Introduction. Let $B = B_n$ be the unit ball in \mathbb{C}^n and let H(B) denote the space of all holomorphic functions on B. By R we denote the radial derivative operator $R = \sum z_j \partial_j$ where for $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, $\partial_j = \partial/\partial z_j$ ($j = 1, \ldots, n$), and we let $D_l = l + R$, with $D = D_1$, for any $l \in \mathbb{C}$. For any monomial $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$, we have $D_l^s z^{\alpha} = (|\alpha| + l)^s z^{\alpha}$ for any $s \in \mathbb{Z}_+$, where $|\alpha| = \alpha_1 + \cdots + \alpha_n$, which shows that for any l > 0, $s \in \mathbb{R}$ and $f \in H(B)$, the fractional derivative $D_l^s f$ of f, of order s, is well-defined and is in H(B). Let $H^p = H^p(B)$, 0 , denote the usual Hardy class of functions in <math>H(B). The Hardy-Sobolev class $H_s^p = H_s^p(B)$ ($0 , <math>s \in \mathbb{R}$) is defined as the space of all f in H(B) whose fractional derivative $D^s f$ is in H^p , and thus $H_0^p = H^p$.

In the one-dimensional case (n = 1), most of the main properties of these H_s^p spaces were investigated early by Privalov in 1918, by Hardy and Littlewood in 1932, and by Smirnov in 1932 (see the references of [7]). The question of extending these results to the higher dimensional case $(n \ge 2)$ has been considered previously by Graham [8, 9] and Krantz [10], and, quite recently, by Beatrous and Burbea [3], where these spaces are viewed as a special case of a larger family of Sobolev spaces of holomorphic functions on *B*. The following result, among other things, appears in [3]:

THEOREM 1.1. Let $0 and <math>s \ge 0$. (i) If s > n/p then H_s^p is contained in the Lipschitz class $\Lambda_{s-n/p}(B)$; (ii) If $0 \le s < n/p$ then H_s^p is contained in the Hardy class $H^{pn/(n-ps)}(B)$;