ANALYTICITY AND SPECTRAL DECOMPOSITIONS OF L^p FOR COMPACT ABELIAN GROUPS

EARL BERKSON, T. A. GILLESPIE AND P. S. MUHLY

Let Γ be a dense subgroup of the real line R. Endow Γ with the discrete topology, and let K be the dual group of Γ . Helson's classic theory uses the spectral representation in Stone's Theorem for unitary groups to establish and implement a one-to-one correspondence Φ_2 between the cocycles on K and the normalized simply invariant subspaces of $L^2(K)$. Using our recent extension of Stone's Theorem to UMD spaces, we generalize Helson's theory to $L^{p}(K)$, 1 , byproducing spectral decompositions of $L^{p}(K)$ which provide a correspondence analogous to Φ_2 . In particular this approach shows that every normalized simply invariant subspace of $L^{p}(K)$ is the range of a bounded idempotent. However, unlike the situation in the L^2 -setting, our spectral decompositions do not stem from a projection-valued measure. Instead they owe their origins to the Hilbert transform of $L^{p}(\mathbf{R})$. In the context of abstract UMD spaces, we develop the relationships between holomorphic semigroup extensions and the spectral decompositions of bounded one-parameter groups. The results are then applied to describe, in terms of generalized analyticity, the normalized simply invariant subspaces of $L^p(K)$.

More specifically, throughout what follows K will be a compact abelian group other than $\{0\}$ or the unit circle **T** such that the dual group of K is archimedean ordered. Equivalently, we shall require that K is the dual group of Γ , where Γ arises as a dense subgroup of the real line **R**, and Γ is then endowed with the natural order of **R** and the discrete topology. For each $\lambda \in \Gamma$ we denote by χ_{λ} the corresponding character on K (evaluation at λ), and for each $t \in \mathbf{R}$ we let e_t be the element of K defined by $e_t(\lambda) = \exp(it\lambda)$ for all $\lambda \in \Gamma$. As is well-known, $t \to e_t$ is a continuous isomorphism of **R** onto a dense subgroup of K. For 1we follow Helson in defining a simply invariant subspace of $L^{p}(K)$ to be a closed subspace M of $L^{p}(K)$ such that $\chi_{\lambda}M \subseteq M$ for all $\lambda > 0$, but for some $\alpha < 0$, $\chi_{\alpha} M$ is not a subset of M. A simply invariant subspace M is said to be *normalized* provided $M = \bigcap \{\chi_{\lambda} M: \lambda \in \Gamma, \lambda < 0\}$. The set of all normalized simply invariant subspaces of $L^{p}(K)$ will be denoted by \mathscr{S}_p . A cocycle on K is a Borel measurable function A: $\mathbf{R} \times K \to \mathbf{T}$ such that

$$A(t+u, x) = A(t, x)A(u, x+e_t), \text{ for } t \in \mathbf{R}, u \in \mathbf{R}, x \in K.$$