THE BEST MODULUS OF CONTINUITY FOR SOLUTIONS OF THE MINIMAL SURFACE EQUATION

GRAHAM H. WILLIAMS

We consider the Dirichlet problem for the minimal surface equation on a bounded domain in \mathbb{R}^n which has nonnegative mean curvature. We give a modulus of continuity for the solution u in terms of the modulus of continuity of the boundary values ϕ . The modulus obtained is shown to be best possible.

0. Introduction. We consider the Dirichlet problem for the minimal surface equation in a bounded domain $\Omega \subseteq \mathbf{R}^N$ with boundary values ϕ . We shall assume that $\partial \Omega$ has nonnegative mean curvature and so the existence of a solution u for any continuous function ϕ is known [JS]. In this paper we consider the way that the regularity of u depends on the regularity of ϕ . Many results have already been obtained for this problem. For example if $\phi \in C^{k,\alpha}(\partial\Omega)$, $k \ge 1$, then $u \in C^{k,\alpha}(\overline{\Omega})$. (See [GG], [L1], **[GT].)** If $\phi \in C^{0,1}(\partial\Omega)$ then $u \in C^{0,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$ which depends on the Lipschitz constant of ϕ and the behaviour of the mean curvature of $\partial \Omega$. (See [G1] and also [W1] where optimal results are obtained for the value of α .) If $\phi \in C^{0,\alpha}(\partial\Omega)$, $0 < \alpha \le 1$, and the mean curvature of $\partial\Omega$ is strictly positive then $u \in C^{0,\alpha/2}(\overline{\Omega})$ (see [G1] and [L2].) More generally if $x_0 \in \partial \Omega$, ϕ satisfies a Hölder condition with exponent α at x_0 and the mean curvature of $\partial \Omega$ is larger than $C|x - x_0|^k$, C > 0, near x_0 then u satisfies a Hölder condition at x_0 with exponent $\alpha/(k+2)$. (See [W1] and [W2].) However few results, apart from just continuity, have been given in the case $\phi \in C^{0,\alpha}(\partial\Omega), 0 < \alpha < 1$, and assuming only nonnegative mean curvature. A modulus of continuity could be found by the method proposed in §13.5 of [GT]. The counter-examples of [W1] show that in general the solution u will not be Hölder continuous for any exponent β . We shall explicitly find a modulus of continuity for u in this situation and then show that it is the best possible. Actually the results hold, and are presented, for a fairly general modulus of continuity for ϕ rather than just the Hölder condition. Further the results given are local results and so we only need to assume $\partial \Omega$ has nonnegative mean curvature in a neighbourhood of the point under consideration. However in this case